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A study is made of a model of a drop in the ease of constant adsorption of a surfactant which is present in the 
drop as a result of dissolution of the condensation nucleus, litis model, corresponding to the limiting situation 
of complete saturation of adsorption, makes it possible to establish the entire thermodynamic pattern of 
behavior of the chemical-potential extrema of the substance which condenses in the drop from the vapor phase. 
A restriction is placed on the size of the nucleus of the surfactant, this being the size at which only extrema 
exist. It is shown that there are two extrema: one maximum and one minimum. Tlie threshold value of the 
chemical potential of the vapor is determined. The range of application of the model in the thermodynamics 
of condensation on soluble surfactant nuclei is also established. The results of the analytical theory are 
illustrated by direct numerical calculations of the chemical potential of the condensing substance as a function 
of the number of molecules of the latter. 

The principles of the thermodynamics of condensation on soluble nuclei were presented in [1] with allowance for 
adsorption of the substance on the surface of a drop. A closed system of equations linking the thermodynamic characteristics 
of a drop in which the chemical potential of the condensate (the substance which condenses in the drop from the vapor phase) 
has an extremum was constructed for the general case of an arbitrary degree of saturation of adequate. The study of this system 
of equations in the model of a drop with constant adsorption will be the goal of the present article. 

Although the assumption of constant adsorptions — corresponding to the limiting situation of complete saturation of 
adsorption — makes our investigation quite a bit easier, it nonetheless remains challenging. In fact, with constant adsorption, 
there continues to be an effect on the surface tension of the drop. In accordance with the Gibbs adsorption equation, this in 
turn causes surface tension to be dependent on the concentration of the solution inside the drop. Thus, even in a drop model 
with constant adsorption, the thermodynamics of condensation on soluble surfactant nuclei remains nonlinear. 

At the same time, the model makes it possible to not only quantitatively describe the thermodynamics of condensation 
on soluble surfactant nuclei in the case of complete saturation of adsorption, but it allows us to describe the laws characteristic 
of the thermodynamics of condensation on such nuclei in general 

Initial System of Equations. The closed system of equations constructed in [1] — which, with allowance for 
adsorption, connects the thermodynamics characteristics of a drop in which the chemical potential of the condensation has an 
extremum — is written as follows in the limiting situation of complete saturation of adsorption: 

(see relations (40), (55-57) from [1]). Here, 
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Z=^4l3iVn ( 0 < 2 < 1 ) (3) 

v = a/s^ (4) 

w^a /Sao (5) 

i=*/x* ( 6 ) 

([1], definitions (32), (46-48), with allowance for Eq. (53)). In turn, v0 is the total number of condensate molecules; j / n is 

the number of molecules or ions of the condensation nucleus; x is the relative concentration of the substance of the nucleus 

in the solution within the bulk phase of the drop; x a is a characteristic value of concentration such that filling of the adsorption 

monolayer of surfactant only begins at x « x a and ends at x > > x a (the characteristic value of x a is determined 

quantitatively by Eq. (13) from [1]); s ^ is the dimensionless adsorption in the case of complete saturation of adsorption 

(dimensionless adsorption s with an arbitrary degree of filling of the monolayer is given by Eq. (4) from [1]); a is the 

dimensionless surface tension of the drop (determined by Eq. (4) from [2]); d is the dimensionless surface tension of the drop 

in the absence of adsorption. The quantities vxv x a , s w , and w are external parameters of the problem. 

Written in thermodynamic form, Eq. (1) solves the following equation when s = s t o . 

(dbJdp)0=Q (7) 

where b, is the chemical potential of the condensate inside the bulk phase of the drop. The zero subscript characterizes values 

of quantities at the extremum of the chemical potential (for simplicity, this subscript is indicated in (3-6) only for the quantity 

p). Equation (2) is a consequence of the Gibbs adsorption equation at s = s M . 

Following [1], we choose the quantity z defined by (3) as the independent variable to describe a drop in which the 

chemical potential of the condensate has an extremum. This quantity is the fraction of the total amount of the substance of the 

nucleus that is adsorbed. In this case, the parameter vn (an external parameter of the problem) will be a function of z. As will 

be seen below, the variable z also makes it possible to see the entire thermodynamic pattern of behavior of the extrema of 

condensate chemical potential. No special problems are encountered in changing over from the independent variable z to the 

independent variable p n in the final formulas. 

Concentration of the Solution Inside a Drop with Constant Adsorption. Solving system (1-2) for we have 

(3 ^ 2 ) 2 

I = exp (w) exp [ - — ] (g) 
IZ [1 - 2) 

Expression (8) shows that 

31/az > 0 (z<zm) (9) 

3^/32 =0 (z=zm) (10) 

3 £ / 3 z < 0 (2 > zm) (") 

where 

=3/5 (12) 

We will use the subscript m to denote quantities at the point z = z n l . Here, in accordance with (9-11), the 
concentration of the solution £ inside a drop having a maximum of chemical potential is itself maximal. We obtain the 
following from (8) and (12) for the maximum value £ m of concentration £ 

\ m = e x p ( w - 12) (13) 

The dependence of concentration £ on the variable z described by Eq. (8) is shown in Fig. I in the physical region 

of the variable 0 < z < L 

Observance of the condition £ > > 1 in the constant-adsorption model for the solution concentration £ implies that the 

same condition is at least also observed for the maximum value of concentration £ n r In light of (12), this means that 
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Fig. L Dependence of the concentration of 
the solution £ inside a drop on the variable 
z describing the drop with constant 
adsorption. 

e x p ( w ~ ~ 1 2 ) > l ^ 

Inequality (14), imposing a lower bound on the initial parameter w, is in principle necessary because the extremum of the 
condensate chemical potential can be reached with constant adsorption on the drop surface — with complete saturation of 
adsorption. 

In accordance with inequality (14), the parameter w should be at least 2-3 units greater than 12. As is clear from (5), 
however, this would require the surface tension d in the absence of adsorption to be relatively large and, conversely, would 
require adsorption s w to be relatively small in the case of complete saturation. 

In accordance with (2), the greater £, the smaller v. The value of v m is thus minimal for v. It follows from (2) and 
(13) that 

vm=\2 (15) 

Thus, regardless of the degree to which inequality (14) is observed, the value of v found from (4) has the same minimum value 
of 12 at the maximum of solution concentration. When inequality (14) is observed, the solution concentration inside a drop 
in which condensate chemical potential has a extremum stabilizes the surface tension of the drop a at the point of its minimum 
(at the point of the concentration maximum). The minimum value of surface tension a is always equal to 1 2 $ ^ . 

Using (8), (12), and (13), we obtain 

( 3 2 £ / 3 z 2 ) U ^ m = ~- (625/6) i m (16) 

where the coefficient with | m is independent of the initial parameters of the problem. The minus sign in the right side of (16) 
corresponds to the maximum of concentration £ at the point z = z m . 

Thermodynamics of a Drop with Constant Adsorption. In accordance with general thermodynamic expressions (34) 
and (35) from [1] and with allowance for the equality s = s ^ and definition (6), we have: 

s i i - z i 

i / 3 

z 3 i 2 I 

S o o 1 ~Z i 

X n 

Inserting (8) into (17) and (18), we find 

si12 1 - r , ( 3 - z ) 2 

exp ( - w) — — - cxp [ — 1 

(17) 

(18) 

(19) 
xa z ^ 2z{\-z) 

X „ , 1 - 2 (3 - zf 
— exp y i / 3 _ _ ! ! _ e x p w - j 

x, 2z ( l -z) J (20) 
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Fig. 2 . Dependence of vn on the variable z 
describing a drop in the case of constant 
adsorption. 
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Fig. 3 . Dependence of v0 on the variable z 
describing a drop in the case of constant 
adsorption. 

which in addition to the already-determined concentration £ determines the thermodynamic characteristics of a drop with an 
extreme chemical potential as a function of the variable z. 

Let us examine the dependence of PN on z. In accordance with (19), we have 

e x p ( - w ) — r j r - - — — e x p [ ] 
3z 2 J C a z 7 ^ 2 ( l - 2 ) ~ " r L 2 z ( l - z ) 

The partial derivatives are taken with fixed x t t , s ^ , and w. 
Whether the ex t remum of condensate chemical potential b„ is maximal or minimal is determined by die sign of the 

second derivative ( 9 2 b v / 3 v 2 ) 0 . In contrast to the derivatives in which z is an independent variable and Pn is thus a function of 

z, the derivative just written (as the derivative in Eq. (7)) should be taken with all of the external parameters p n , x a , s ^ , and 

wfixed. Considering this, differentiating thermodynamic expression (30) from [I] for dbpldp with respect to v with the use 

of (2-4), (6), and (17-18) and the equality s = s ^ , and taking (7) into account, after some simple but very lengthy calculations 

we obtain 

3 % ^ 2 ^ ( 3 - z ) ( z 2 + 4 z - 3 ) ( 2 2 ) 

Using (21) and (22), we determine 

3^/32 < 0 , (d2bjdpz)n < 0 (2 < z . ) (23) 

dvjdz=0, (d2bjdv2)0 = 0 (2 = 2 J (24) 

3^/82 > 0 , (b2bjdv2)0 > 0 ( 2 > 2 j (25) 
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Fig. 4. Chemical potential by as a function of v with vn = 
1000, xa = 1 0 " 5 , s O T •= • 1, w = 20, and constant adsorp­

tion. 

where 

z . = - 2 + VT =-0.65 (26) 

In accordance with (23-25), the value of PN at z = z* is minimal at the extremum of the chemical potential of the 

condensate. Using vn* to represent the minimum value of p n f we find from (19) and (26) that 

si12 a , m . 
v%\ =* 1 2 5 • 1 0 s e x p ( - — ) 

(where we have taken (5) into account in order to show the sensitivity of the exponent to the parameter s ^ ) . It should be noted 
that the common factor z 2 + 4z - 3 in Eqs. (21-22) is responsible for (23-26), this factor also determining the sign of the right 
sides of these expressions at 0 < z < 1. We also note that, in accordance with (12) and (26), the value of z* is slightly greater 
than z m . 

We can make the following conclusions on the basis of (23-25). 
The minimum of vm is reached at z = z n . This minimum is equal to the value of vn* determined by (27). 
In the regions z < z* and z > z» on the axis of z up to and beyond the minimum of P N > the ext remum of the chemical 

potential of the condensate is a maximum and a minimum, respectively. 
The maximum and minimum of condensate chemical potential merge at the point z = z*. 
Let us examine the dependence of v0 on z. In accordance with (20), we have 

3*o / 3 S o . 3z 2 - 16z + 9 (3 -zf 
— — = - e x p ( - w ) — — — - exp f — 1 (28) 

(the partial derivative is taken with fixed x a , s ^ , and w). Using (28), we establish 

dv0jdz < 0 (z <zm J 

dv0ldz= 0 (z = z . „ ) 
dv0jdz < 0 (z < z . J ^ 9 ) 

(30) 
bvQ!dz>0 (z > z . J ^ 

where 

2 . . - ( 8 - \ / T 7 ) / 3 ^ 0 . 6 4 (32) 

It follows from (29-31) that the value z = z , gives a minimum of „ 0 . In accordance with (12), (26), and (32) this value is 
much greater than z m and slightly less than z*. 
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Extrema of C o n d e n s a t e Chemica l Potential with Constant Adsorpt ion. If p n is given (which is usually the case 
in experiments), then it follows from the conclusions reached in the previous section on the basis of (23-25) that at vn < i>n* 
there are no drops in which the condensate has an extremum of chemical potential, while at p n > y n* there are two drops 
having such an ex t remum. One of them (which we will call the first drop) has a maximum, while the other (the second drop) 
has a minimum. The values Z j and of the variable z corresponding to these drops satisfy the inequalities 

z 1 < z „ z 2 >z% (33) 

When PN = pn*y the drops having potential extrema become identical. They then correspond to the value z* of z. 
The above is illustrated by Fig. 2 . The curve shows the dependence of PU on z in the interval 0 < z < 1 as described 

by (19) and (21) . The part of the curve represented by the solid line at 0 < z < z* corresponds to a maximum of condensate 
chemical potential, while the part shown by the dashed line at z* < z < 1 corresponds to a minimum of chemical potential. 
Points 1 and 2 on the curve and the corresponding values zl and z 2 correspond to drops which, at the specified P N , have a 
maximum and minimum of chemical potential. Indicated on the z axis is the value z m that gives the maximum of solution 
concentration inside the drop . It is evident that this value lies within a region in which the extremum of condensate chemical 
potential is a maximum. 

Thus, at i>n > *>n*, Eq. (7) has two roots P Q [ and P 0 2 . The subscripts 1 and 2 denote (as in Z j and z 2 ) values of 
thermodynamic quantities in drops in which the condensate has a chemical potential with a maximum and a minimum, 
respectively. 

Let us see how the roots *>01 and P 0 2 are positioned relative to one another on the axis of v for the given viv Here, 
we have 

(34) 

It follows from (17-18) that 

Applying Eq. (35) to a drop characterized by the values z h p Q l , and p n X and to another drop characterized by the values z 2 , 
j>q2) and P n l and then taking (34) into account, we obtain 

^ / • ' J ? (36) 

In light of (33), we will have 

We can use (36-37) to establish 

Thus, with p n given, the root p Q l ensuring the location of the maximum of chemical potential b„ on the v axis is to the left of 
the root P 0 2 ensuring the minimum of chemical potential bp. 

This is illustrated by Fig. 3 . The curve shows the dependence of v0 on z in the interval 0 < z < 1 as determined by 
Eqs. (20) and (28). The part of the curve represented by the solid line at 0 < z < z* corresponds to the maximum of chemical 
potential of the condensate, while the part represented by the dashed line at z* < z < 1 corresponds to the minimum of 
condensate chemical potential in the drop. Points I and 2 on the curve and the corresponding values z l and z 2 of z, as well 
as the values J>01 and P 0 2 of P 0 , correspond to drops in which, for the given P I V the chemical potential of the condensate has 
a maximum and a. minimum. The figure also shows the relative location of the coordinates z* and z** on the z axis as 
determined by (26) and (32) and the same for the coordinates z, and z 2 on the z axis as determined by (37). It is apparent that 
inequality (38) is satisfied. 
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Threshold Value of the Chemical Potential of the Vapor . Limits of Applicabi l i ty of t h e T h e o r y . In accordance 
with general thermodynamic formula (41) from [1], the following is valid for the extreme value (bp)0 of condensate chemical 
potential by 

(hv)0=x [ J Z V - l ] (39) 
3(1 - z ) 

where we have taken into account relation (57) from [ I ] , corresponding to the given case of complete saturation of adsorption: 
s = s w . The chemical potential of the condensate b„ is expressed in thermal energy units and is reckoned from the value 
corresponding to equilibrium between the vapor and the condensing liquid when their contact surface is planer. 

In the thermodynamics of condensation on soluble surfactant nuclei with constant adsorption of the surfactant on the 
surface of the drops, at vn > pn* Eq. (7) has only one root P 0 = P 0 1 which yields a maximum of condensate chemical potential 
b„ (the second root gives a minimum of by). Thus, we have the following for the threshold value b t r of the chemical potential 
of the vapor, determined by the maximum chemical potential of the condensate (or the greatest of its maxima, if it has more 
than one) 

* i r = ( M o i (40) 

where, by virtue of (39) and (6), 

(b»)oi = * a $ i [ _ » 1 ] ( 4 1 ) 

(£} and vl correspond to the value zt of the variable z). The threshold value b l r of the chemical potential of the vapor (as b )̂ 
is expressed in thermal energy units and is reckoned from the value corresponding to equilibrium between the vapor and the 
condensing liquid when their contact surface is planar. 

The previous sections of this article described an algorithm for finding the quantities in the right side of (41) with 
assigned external parameters Pnt x a , s ^ , and w. 

Let us discuss the physical validity of the above thermodynamic study of condensation on soluble nuclei in a drop 
model with constant adsorption. The method of investigation was rigorous and thus places no restrictions on the results. The 
only limitations are due to the model itself, in which it is assumed that £ » 1. 

At p n

l / 2 < PN*L/2> Eq, (7) in general has no roots — the condensate in drops cannot have an ex t remum of chemical 
potential. However, if the inequality p]{2 > v12* is satisfied sufficiently weakly, then the values zx and z 2 of the variable z for 
drops in which the condensate has a maximum and minimum of chemical potential will be close to z* and, because z* ~ z m , 
will also be close to z m (see Fig. 2). In this case, the concentrations £ t and £ 2 °f the solution inside these drops will be close 
to the maximum value £ m . Since the condition for maximum concentration £ m is observed with restriction (14), the conditions 
£1 > > 1, £ 2 > > 1 will also be observed with the same restriction. 

The inequality P\{2 > becomes stronger with an increase in ^ ( 2 . Accordingly, the concentrations £ h £ 2 come to 
be significantly less than the maximum concentration £ m . As is clear from (17), however, the concentrations £ j , £ 0 will 
continue to satisfy the conditions £j > > 1, £ 2 > > 1 defining the range of application of the model as long as the following 
restriction holds 

"« < --^jr (42) 

where z = z{ or z = z 2 . In accordance with (13), restriction (42) is equivalent to restriction (14) at z = z m , when £ = £ n r 

However, (42) is stricter than (14) when z ^ z m . 

In the drop model with constant adsorption, the variable z cannot reach the limiting values z = 0 and z = 1 — values 
at which, in accordance with (8) (Fig. 1), we would have £ = 0. 

Direct Calculations of the Chemical Potential of the Condensate with Constant Adsorp t ion . We will illustrate 
the above analytical study of extrema of condensate chemical potential by by calculating b^ directly as a function of the variable 
p with assigned external parameters P N Y x a , s ^ , and w. 

We will proceed on the basis of the general thermodynamic expression for by obtained in [ I ] : 
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bv~~x + ( 2 / 3 ) a t > - 1 ' 3 (43) 

([1], expression (9)). In the given case of constant adsorption, besides s = s w we have Eq. (2), As is clear from definitions 
(4-6), this equation gives the dependence of the surface tension of the drop a on concentration x. We also take into account 
the material balance equation ([1], Eq. (5)), which at s = reduces to 

X = V„V~l - 5 ^ - 1 / 3 (44) 

In accordance with (44) and (2), we obtain: x - > o o , a - * — o o a s ^ - ^ O . While having purely formal significance, this 
result (in accordance with (43)) nonetheless ensures the correct final result: b„ -* - oo as v 0, The latter is not influenced 
by the necessity of having to replace the first term in the right side of (43) by - I n x as x -» oo. 

In accordance with (44), (2) and (43), we also obtain 

2 A. l~\ 

* s ~ 5 ^ m I x 0 W -v)-+Q(?-> * m a x - 0) 

a = ~ S o o In ( " m a x - ^ ) - ^ o o ( y ^ v m a x - 0 ) 

2 
^ = - j s ^ m V x l n ^ m a x -»)-*<*> (y^vmzx - 0 ) 

where 

and v umax — 0 means that v approaches p m a x from the left. 
Equation (47) and b^ — co (V -> 0) lead to the same conclusion as above — that the maximum of chemical potential 

b v in the model of a drop with constant adsorption can exist only together with its minimum. 
The value y m a x determined by Eq. (49) is in principle the maximum for the variable v in the constant-adsorption drop 

model. Upon attainment of the given value, all of the condensed matter turns out to be adsorbed on the surface of the drop. 
The fact that we will have x = 0 in this case naturally disturbs the condition x/x^ > > 1 defining the region in which the model 
is valid. As long as the condition x/xa >> 1 is satisfied, the value of PnVdX can only be approached from below. 

As was explained above, the inequality PN > p n * (where pn* is determined by (27)) is the condition for the simultaneous 
existence of a maximum and minimum of chemical potential b¥. If the inequality pn > PIX% is not observed, then chemical 
potential by in general has no extrema. In this case, by virtue of (47) and b„ -> - <*> {v -> 0), chemical potential b„ increases 
monotonically from — oo to oo with an increase in p in the interval 0 < v < vmQX. 

Figure 4 shows results from calculation of b„ as a function of p on the basis of of (43), (2), (4-6), and (44). We put 
^n = 1000, xa = 1 0 " " 5 , s M = 1, a = 20. In light of (5), this means that w = 20. The latter in turn ensures satisfaction of 
necessary condition (14) for a drop model with constant adsorption. Given die chosen values of die parameters, we have the 
following on the basis of (27): p n * = 735. The inequality Pn > PN* is thus satisfied. The relative location of the maximum 
and minimum in Fig. 4 agrees widi (38). 

Having decreased the parameter p n , we weaken the inequality p n > un*. This is turn causes the maximum and 
minimum of b,, to converge. They become the same when pn - j > n * . 

As is clear from (27), weakening of the inequality Pn > vn* might also be due to a change in the parameters x a , s K ) 

and a for the chosen P N . 

The above analytical study of the extrema of condensate chemical potential was essential to discovering the above-
described nontrivial effect of all four external parameters pn> x a , and s w on b , in relation to v, i.e. this could not have been 
determined simply by numerical calculation. Another point to be emphasized is that any numerical determination of b„ as a 
function of v applies in any case only to one value of the external parameter p n 1 while the analytical relations found between 

(45) 

(46) 

(47) 

(48) 
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the thermodynamic characteristics of a drop with an extremum of condensate chemical potential embrace the entire range of 

possible values of pn* 
We also note the following in conclusion. Compared to the threshold chemical potential found here for the vapor on 

the basis of experimental data on heterogeneous condensation, the other thermodynamic characteristics of heterogeneous 
nucleation are less important [2, 3] . A thermodynamic method of finding all of these characteristics for the chosen threshold 
value b t r was proposed in [2]. This method, used in [2] for the case when the adsorption of the substance of the soluble 
condensation nucleus is ignored, can also be used without difficulty (assuming a value is found for b l r ) when allowance is made 
for adsorption. However, due to the cumbersome calculations that would be required, we have limited our study of the 
thermodynamics of heterogeneous nucleation to the central problem noted in [2] — study of the extrema of condensate chemical 
potential. 
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