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Abstract—The algorithm of the calculations of all principal kinetic characteristics of nucleation of supercriti-
cal droplets under the gradual creation of the metastable state in vapor (total number of emerging droples,
beginning time and duration of droplet emergence, and dimensions of droplets) was formulated. It was shown
that under the given properties of the vapor-gas medium, the lignid condensing from it, as well as at given
dimensions of condensation nuclei, ihe algorithm allows us Lo cover the entire range of the characteristic time
of the creation of the meiastable siate in vapor and that of the initial concentration of the condensation nuclei
admitied by the conditions of the theory applicabitity. It was elucidated that the macroscopicity of condensation
nuclei results in more rigorous conditions of applicabilily. Based on the algorithm, numerical calculations dem-

onstrated the ability of the theory proposed to make practical prospects in a rather wide ran ge of exiernal param-
clers of the theory, The theory was generalized for the case of the gradual creation, arbitrarily changing i time,

of the metastable state in vapor

INTRODUCTION

We continue the study {1] of the nucleation of super-
critical droplets as it occurs when macroscopic nuclei
act as the centers of droplet nucleaiion in vapor and
when the metastable state in vapor is not created instan-
tancously, i.e., before condensation, but gradually in
the condensation process. As was already mentioned
{1}, interesi in macroscopic condensation nuclei is
raised due to the fact that these particles can ensure
vapor condensation at low supersaturations. As to the
inferest in the gradual and externally regulated creation
of the metastable state in vapor, it is explained by the
fact that such a regime enables us to control the devel-
opment of the condensation process and even master it.
Both macroscopic condensation nuclei and gradual cre-
ation of the mefastable state in vapor are frequently
encountered in nature,

We remind the reader that the thermodynamic foun-
dations [2] of supercritical dropiet nucleation on the
macroscopic nuclei and the kinetic principles [3] of
overcoming the activation barrier of dropiet nucleation
on such nuclei were used as the initial principles of the
research performed in [1]. On the other hand, the
research 1] was also based on the results of the kinetic
theory of heterogeneous condensation under conditions
of gradual creation of the metastable state in vapor
developed in [4, 5]. The combination of the theories
proposed in [2, 3] and [4, 5] enables us to take into

account both nucler macroscopicity and the gradual
creation of the metasiable state in vapor [1].

The aim of this paper is to elaborate on the devel-
oped theory [1] to such a level that all principal (from
the practical viewpoint) kinetic characteristics of the
nucleation of supercritical dioplets may be adequately
calculated with allowance made for the conditions of
theory applicability. These calculations demonstrate
that the theory suggested in [1} and employed in this
paper enables us to formulate promising recommenda-
tions within a rather wide range of values of the exter-
nal parameters of the theory encountered in practice
despite the more rigorous conditions of its applicability
at the macroscopicity of condensation nuclei, which
was revealed below.

As in [1], we assume ihat the condensation nuciei
are soluble in the droplets that originate on them and
that the substance comprising nuclei consists of a sui-
face-inactive material. Further, as in [1], we assums
that the superciitical droplets, once they have origi-
nated, grow throughout the entire stage of their effec-
tive micleation (the stage that is of interest to us) under
the regime of free-molecule exchange between the
droplet and the vapor. In our forthcoming communica-
tions, we will generalize the theory for cases of insoli-
ble condensation nuclej and the growth of supercritical
droplets outside the linaits of the free-molecular regime.
Finally, as in [1], all condensation nuclei are assumed
to be identical. The possible direct generalization of the
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theory substantiated in [1] for the case of polydisperse
condensation nuclei will be discussed at the end of this

paper.

1. INITTIAL RELATIOMNSHIPS
OF DROPLET NUCLEATION KINETICS

Let us summarize the relevant data [1-5] o the
forthcoming exposition.

Let us denote the number of molecules {(or tons) in
condensation nucleus by v,. If the condensation nuclei
are macroscopic, then

vi% s 1. (1.1)

The supersaturation of vapor, denoted by (, is
defined by the equality

= (n/n,)-1

where 1 is the number of vapor molecules per unit vol-
ume of the vapor-gas medium and n,, is the number of
saturated vapor molecules per unit volume of this
vapor.

Under the assumption that the condensation nucieus
is readily soluble in the droplet, the nucleus must rep-
resent the solution of the nucleus substance in a liquid
condensed from vapor. As shown in [2], the droplets
that are surmounting the activation barrier of nucleation
and, wmorcover, that have already surmounted it and
now grow irreversibly are so large that the solution of
the center-forming material in them is dilute, provided
that condition (1.1) is true.

The threshold supersaturation of vapor {,,, above
which the foumation of supercritical droplets on con-
densation nuclei is barrierless, is [ I, equation (1.3)]

Co = 22a) 7271, (1.3)

(1.2)

where

= (4no/kTY(3v/4n)", (1.4)

Here, & is the surface teasion of a droplet, k is the Boli-
zmarnn constant, 7 is the temperature of the droplet and
the surrovnding vapor—gas medium at the stage corre-
sponding to effective nucleation of supercritical drop-
lets, and v is the molecular vohume of the condensing
liguid. As follows from {1.1) and (1.3},

¢, < 1. (1.5)

Let us describe the gradual creation of the metasta-

ble state in vapor by an increase in the ideal supersatu-

ration @ over the course of time. Ideal supersaturation
D is defined by the equation

D = (n,/n,)-1 (1.6)

where n,,, is the total number of molecuies of the con-
densing substance per wnit volume of the vapor-gas
medium, including the molecules within the droplets.
Ideal supersaturation depends only on the external con-
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ditions. We may implement external control over the
development of supercritical droplet nucleation in time
by setting an increase in the ideal supersaturation over
the course of time, as was shown in [1, 4, 5]. Ideal
supersaturation @, defined by equation (1.6), cannoi be
swaller than the aciual supersaturation {, defined by
equality (1.2), where n accounts for the vapor absorp-
tion by the droplets.

The most imporiant kinetic characteristic of the con-
densation process is the total number of supercritical
droplets originating during this process, The key factor
in this case is the moment t, 1,4, 5] by which half the

total number of supercritical droplets have appeared. If
the metastable state of vapor is created gradually, the
it moment is not known in advance. The higher the

accuracy of its determination, the more adeguate the
theoretical prediction for the total number of supercrit-
ical droplets appearing during the condensation pro-
cess. If the rate of the increase in the ideal supersatura-
tion @ over the course of time ¢ is set externally, the 7,

moment is unambiguously related to the ideal supersat-
uration @ at this moment. Hereafter, the subscript (%)

indicates the quantities al the moment 7.

The & value of the ideal supersaturation @ plays
the role of a reference value in the theory [1, 4, 5]
deseribing the effective nucleation of supercritical
droplets under the conditions of gradual creation of the
metastable state in vapor. Let us remind the reader how
this value was found in [1] in the case of macroscopic
condensation of the nuclet,

The intensity of supercritical droplet nucleation is
very sensitive fo the height of the activation barrier of
nucleation; therefore, the nucleation of supercritical
droplets is fully completed [1] as early as in the preth-
reshold range of vapor supersaturation { covering in the
entire prethreshold range 0 < { < £, of supersaturation
{ in the fairly narrow region with a width approxi-
mately equal io the distance from this region to the
upper boundary of the prethreshold range. The refer-
ence value @ falls just into the prethreshold range.
Dueiothe prommlty of this range to the threshold vahue
Ly of supersaturation { for the case of macroscopic
nuclei, we obtain with a high degree of accuracy

(D* = Cﬂl .

{1, equality (2.8)]. The equality (1.7), containing the
known value (; on the right-hand side, enables us to
simplify significantly the theory for the case of the
gradual creation of the metastable state in vapor.

As follows from J1-5], let us denote the number of
molecules that have condensed from vapor in a droplet
by v. Regardiess of the regime of mass exchange
between the droplet and the vapor, we may always pass
from the v variabie {proportional io the droplet volume
in the dilute solution of a substance comprising

(1.7
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nucleus) to some other variable p, which is such a func-
tion p(v) of v that the rate of its increase p over the
course of time ¢ is independent of p (and v) for all
supercritical droplets, but depends only on vapor super-
saturation {. Passing to this variable, which is appropri-
ate for our theory, we obtain

p = p(&) (1.8)
[1, equality (3.1)]. Below, we refer to the p variable as
the droplet size.

In accordance with [1], let us denote the duration of
the stage corresponding to effective nucleation of
supercritical droplets by At, and the maximal size (at
the Ap axis) of supercritical droplets that is reached by
ihe end of this stage, by p. Evidently, the Ap size also
characterizes the width of the supercritical size spec-
trum at the p-axis. According to (1.8), all supercritical
droplets “move” along the p-axis at the same rate:
therefore, this specirum (actually, each part of the spec-
trum that has been formed by the present moment)
shifts along the p-axis as a whole without changing its
shape. This is another important advantage of introduc-
ing p instead of v for describing the dynamics of super-
critical droplet growth. For the At and Ap values, we
have the following estimates:

At = 1/(P)wc (1.9

and
Ap ~ U/e (1.10)

{1, estimaies (3.5) and (3.6)], where the dimensionless
parameter ¢ is defined by the equalities (3.2) and (3.4)
[1] for ihe general case of arbitrary mass exchange
between the droplets and the vapor and an increase in
ihe ideal supersaturation with time. Parameter ¢
accounts for the dependence between the height of the
activation barrier of nucleation and vapor supersatura-
tion in the vicinify of the £ = ®, value. Accouniing for
this dependence is important for the theory of droplet
aucleation on the nuclei under the gradual creation of
the metastable state in vapor.

As shown in [3], in spite of the constraint (1.1), the
activation barrier of nucleation is almost always sur-
mounted by the droplets under the fres-molecule
regime of the droplet-vapor mass exchange. Foliowing
from [1], fet us assume that the same regime is pre-
served for supercritical droplets throughout the stage of
their effective nucieation. In the next section, we will
formulate the condition required for this assumptien to
be acceptable. An appropriaie variable for describing
the growth of a droplet over the course of time 7 at the
rate which is independent of p (or v) for all supercritical
droplets, but depends [in accordance with (1.8)] only
on the vapor supersaturation § is the parameter

p = v (1.11)

For the rate of an increase in a variable over the

course of time, we obtain
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p = al/1. (1.12)
where . is the condensation coefficient of vapor mole-
cules, and 7 is the characteristic time of the free path for
a molecule in saturated vapor. This time is determined as

1= 12/136m) v P a vy, (1.13)

where vy is the average thermal velocity of vapor mol-
ecules (v* is introduced to estimate the cross section
of molecular collision). Like the n_ and ¢ quantities
iniroduced in (1.2) and (1.4), the & and T values depend
on the temperature of the droplets and the surrounding
vapor-gas medium ai the stage corresponding to effec-
tive nucleation of supercritical droplets. In section 6,
we will show how to find this temperature,

A represendative approximation for describing the
external creation of the metastable state in vapor is the
power approximation of the increase in the ideal super-
saturation @ over the course of time #:

@ = (/)" (i.14)

Following [1, 4, 5], let us take advantage of this
approximation. It contains iwo independent positive
parameters: the scaling time r,, and the exponent m.
According to (1.14), the time ¢ is taken with the refer-
ence to the moment corresponding to ® = 0. The gen-
eralization of the theory for the case of the gradual cre-
ation, arbitrarily changing in time, of the metastable
state in vapor will be discussed in Section 5.

For parameter ¢ at the free-molecular regime of the
growth of supercriticai droplets, the following approx-
imate relationship was obtained in {1]

{7m+3)/6m

B 24 ( 2'7 )(JJH— 1)/ HIT vn

61/2 25/2 at%a3(m+1)/2m

(1.15)

i1, relation (4.14)].

In addition fo parameter ¢, the dimensionless
parameter ki is important for the allowance of the
dependence between the height of the activation L:)alrr‘[er
of nucleation and vapor supersaturation in the vicinity
of the { = @ value. This parameter is defined as

. 27 (25/2)3(m+1)/mn(_m)
i 24572
472>\ 27 o
(1.16)
y o, 3atém+9}/2m
Mt ) GUAmt9)/6m
Vi

{1, relation (4.15)]. Here, n{—eo) denotes the initial con-
centration of condensation nuclei, that is, their number
per unit volume of the vapor-gas medium at the begin-
ning of the stage corresponding to effective nucleation
of supercritical droplets,

The total number N of supercritical droplets that
originate during condensation in a unit volume of the
vapor-gas medium is expressed in terms of the h
parameter by the equation |1, equation 4.9

N =1{=es)[1 - exp(-1/M)]. (1.17)
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We used in this equation, the sign of the approximate
rather than the exact equality, because the relationship
{1.16) is an approximation perse. At i > land h <€ 1,
equation (1.17) yields the formulas

N =n(-e)/h (b > 1), (1.18)

and
Ne=m(-) (h<€1) (1.19)

According to (1.18), supercritical droplets in the
h> | case consume only a very small fraction of the
initial amount of condensation nuclei (each droplet
consumes one such nucleus). On the other hand,
according to (1.19), supercritical droplets in the i <€ 1
case consume alimost the entive initial amount of con-
densation nuclei.

Using the results of the quantitative study of the size
spectrum of supercritical droplets obtained in [4, 5], we
can make estimates (1.9) and (1.10) more precise for
the i 2 1 and h <€ | cases by replacing them for the
approximate equalities

At=3/(Mge (h 31 or h<<1),  (1.20)

and
Ap=3/¢c (h =1 or h<€1l) (1.2

Our interest in the extreme i > land i <€ 1 cases is
explained both by their relative simpiicity and physical
cleamess and by the fact that, for linear dependence
between h and 1(—e0) demonsirated by relationship
(1.16), these situations may be encountered in practice
for a wide range of the initial nucleus concentrations
(oo} more often than the intermediate case where i~ 1,

2. PARAMETRIZATION OF THE SCALING TIME
OF THE INCREASE
IN THE IDEAL SUPERSATURATION

Let us recail the conditions of applicability of the
kinetic theory developed in [1} and employed in this
work. It was revealed that out of all of the conditions
only three are independent.

First, the condition [ 1, inequality (5.1)]
A/t 2 1, {(2.1)

where #, is the time required for the establishment of the
steady-state {actually, quasi-steady-state) regime of
supercritical droplet nucleation. For the ¢, time, we have
the approximate equality [1, expression (5.2)]:

4/3
; ~(3)7/2”€V”
- ) p a,l .

Condition (2.1) guarantees that the droplets are carried
over the activation barrier of nucleation throughout the
entire stage corresponding to the effective nucleation of
supercritical droplets in the steady-state (to be more
exact, guasi-steady-state) regime. As was elucidated
in [1], condition (2.1) also gnarantees that the reference

(2.2)

value @ of ideal supersaturation actually lies in the
prethreshiold range of vapor supersaturation.

Secondly, this is the condition [1, inequality (5.9)]
Ap/p, << 1. (2.3)

Here, p, is the characteristic droplet size at the p-axis
below which the mass exchange between the droplet
and the vapor occurs in a free-molecular regime. For
this size, the following estimate [1, equation (5.8)]

(2.4)

is tive, where 11, is the number of molecules of a passive
gas per unit volume of the vapor—gas medium, Condition
(2.3} states that the free-molecule growth of supercritical
droplets occurs throughout the entire siage corresponding
to the effective nucleation of supercritical droplets.

Finally, this is the condition [1, ineguality (5.11)]
DN Ar» 1, (2.5)

where D is the diffusion coefficient of vapor molecules
in the vapor-gas medium. Condition (2.5) guarantees
that the state of vapor remains to be equilibrium (actu-
ally, guasi-equilibrium) within the entire stage corre-
sponding to the effective nucleation of the droplets in
spite of the vapor absorption by supercritical droplets.

Below, we confine ourselves to the consideration of
the typical and (as was already noted) most widely
encountered extreme practical situations, where i1 2 1
or h <€ 1. This consideration makes our speculations
easier; however, in addition to the three conditions
(2.1), (2.3), and (2.5), an account of the other two con-
ditions determining the whole existence of such
extreme situations (h > 1 or h <€ 1) is reguired.

The necessity to control all five aforementioned
conditions complicates the calculations of the kinetic
characteristics of nucleation directly from formulas
(1.15)-(1.21). To simplify the calculations, ii is appro-
priate {o choose condition (2.1) as “principal” and then
monitor the validity of the four remaining conditions.

With this aim, let us use as reference parameter the
dimensionless parameter equal to Aift, in condition (2.1)
instead of the scaling time ¢, of the increase in the ideal
supersaturation. Denoting this parameter by k, we obiain:

K = At/1,. (2.6)

As before, we consider all remaining external
parameters of the theory (except for the scaling time 7.,)
as the initial parameters. As ascertained below, the
reverse passage: from the x parameter {o the 7, time in
final results will not be unduly difficalt.

From (1.20) and (2.2) with allowance for {1.3), (1.12),
(1.15) and the approximate equality {, = {,,, we obtain

At ) (25/2)1/maf a(4m+3)/2m

o, ~ o (n, + ng)_j v

r—s- = -2—,? ""‘"‘27" :;;%vf:lm +1)/2m (2.7)
(h >1 or h<1).
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Using relationship (2.7) in definition (2.6) and solv-
ing this equality with respect to £,,, we obtain:

(dni+ 13/ 2m

~27 27 V'"K TV,
Lo = a5 2,5/2 o 4me3)/2m

(h =1 o h <€)

This egquation parameirizes the scaling time f,, by
expressing it via the ¥ parameter and external parame-
ters of the theory i, T, @, v,, and a. The linear depen-
dence between the 7, time and the k parameter makes it
possible to pass readily from the x parameter to the
i, time.

Substituting (2.8) into (1.15), (1.16), and (1.18), we
obtain:

(2.8)

~31/221§;5./_6, (h>10or hsl), (29
/3
o}V
h=2l 0 s o 1), @10)
4 e g
and
4n. a
Nﬁi??v““ (h & 1). (2.11)

Expression (1.19) for N at & <€ 1 does not require
any transformations.

Farther, substituting (2.2) into (2.6), we get:

()

) o (2.12)
a

Finally, substitution of (2.9) into (1.21) vields

/2,576
Ap= §—~—~Km——

tr2
L]

(h =1 or h<€1). (2.13)

Note that ithe identical lincar dependence of the Ar
and Ap values on the ¥ parameter represented by rela-
tionships (2.12) and (2.13) follows directly from (1.20),

{1.21), and (2.6) and from the fact that (p),, and i are
independent of the x parameter.

Relationships (2.8)—~(2.13) reflect all the basic data
on the kinetics of nucleation of supercritical droplets on
macroscopic condensation nuclei via auxiliary parame-
ter ¥ (iniroduced instead of the 7, time) and the exiernal
parameters of the theory additional to the £, time.

Using (2.4), (2.11)—(2.13), and {1.19), we obtain
Ap /2 5/6
v ——KO(. Ao, +Hi, ) V—
pr 2 ( % al/z (2.14)

(h =21 or h<€1),
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3/2
DN“Atz%ﬁD 2’3;%11 ~ (k> 1), (219
and
7/2 4/3
DN”“N:@ DR (e )%‘-L (h < 1). 2.16)

According o (2.6) and (2.14)-(2.16), conditions
(2.1), (2.3), and (2.5) are written in terms of the 1 vari-
able as:

K > 1, (2.17)
172
R T
3 Ot(n,,-%-ng)vvn (2.18)
(h >1 or h<1),
3/2
K < gﬁ%nni’%\-}%ﬁ B> 1), (219
and
2/3 AU BN
ey > (2 22l =1y (2
N7 () B (3) DTKV?{” (h=€1). (2.20)

In order to make monitoring of the values easier, we
do noi approximaie numerical muitipliers in our esti-
mations of the order of magnitudes.

Additional conditions that determine the implemen-
tation of exireme situations, where h 2 lorh <€ 1, are
written in accordance with (2,,10) as:

4 A,
M(—e0) B == 57 3V11/3 (h 2 1), (2.21)
and
4n. a
MN(—o0) | =— 7K3vn/3 (h < 1}, (2.22)

1

Note that the m parameter of exponential approxi-
mation (1.14) remains only in relationships (2.7) and
(2.8) and does not enter into relationships (2.9-(2.22).
This indicates that the ¥ variable introduced instead of
the 1., time is preferable.

In conformity with definition (1.11), the N(Ap)?
value estimates the number of vapor molecules con-
tained in supercritical droplets by the end of the stage
comresponding to their effective nucleation. From
(2.11) and (2.13) and with allowance for (1.3), we have
the following relationship for this quantity at A - 1:

N(Ap)gz(c)/z)nmf;,,,/F (h > 1), (2.23)
where

T=(24/6""W". (2.24)
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Equality (2.24) coincides with equality (4.12) from
(1] for the T' parameter. According to the physical
meaning of the I" parameter [1], we may state that when
the vapor supersaturation { in the vicinity of the [ = D
value is varied by aboui @ /T, the intensiiy of the
nucieation of supereritical droplets varies o a signifi-
cant degree. 1t was shown in {1] that in the # > 1 case
it is the absorption of vapor molecules by supercritical
droplets thai stops effective nucleation of these drop-
lets; thetelore, we see [with account for (1.2) and (7))
that the n,,{, /T value in (2.23) estimates the number of
vapor molecuies absorbed by supercritical droplets at
the stage corresponding to the effective nucleation of
the droplets.

The established physical meaning of relationship
(2.23) as the balance of the number of vapor molecules
confirms the validity of the treatment performed in this
section, Besides, relationship (2.23), together with
equality (2.24), explains why the N(Ap)’ value is inde-
pendent of the x parameter at h » 1,

Hence, the substantiated linear dependence of the At
and Ap values on the ¥ parameter at 1 > | and & < 1
supports the reciprocal cube dependence of the N value
on the K parameter at h > 1.

3. ALGORITHM OF CALCULATIONS
OF THE KINETIC CHARACTERISTICS
OF DROPLET NUCLEATION

Let us formulate the caleulation algorithm for alf
principal kinetic characteristics of the nucleation of
supercritical deoplets on macroscopic condensation
nuclei during the gradual creation of the metastable
state in vapor. In this algorithm, we consider all exter-
nal parameters of the theory (a, @, T, it.. D, 1y, v, v,
and m}, except for the x parameter (determining the
scaling time 1) and initial coneentration of condensa-
tion nuclei 1(-e), as the preset values. It is assumed
that the x parameter and concentration 1j(—e) may be
varied, however, within the conditions (2.17)—(2.22) of
the theory applicabitity. Of course, this will broaden the
possibility of the calculation algorithm and make it
more efficient.

We begin our calculations with the determination of
the £, and ¢, values by the formulas (1.3) and (2.2); the
& parameter and concentration 1(—<e) do not enter into
these formulas at all.

Further, using formula (2.8), we find the ¢, value at
he land h < 1.

Then, from equation (2.11), we calculate the N
value at /s 3 1. At h <€ ], the N vaiue is given by formula
(1.19).

The Ar value is calculated from formula (2.12) or
directly from definition (2.6) and the already known
1, value,

Using formula (2.13), we determine the Ap value at
he landh <1,

Finally, by the formula

- Vim
e = 1.8,

following from (1.7) and (1.14) and from the already
known &, and £, values, we calcolate the 1, moment at
the time taken (as accepted in the theory) with the ref-
erence to the moment corresponding by power approx-
imation (I.14) to @ = 0. The z,, and ¢ . momemts of the
onset and the end of effective nucleation of supercriti-
cal droplets may be determined using the following
approximate equalities:

tnn = f* —At/zr

(3.1

(G.2)

and

far=le v AL/2, (3.2
In these equations, it was taken into account that the r_
momeitt is located {4, 5] alinost at the middle part of the
time interval corresponding to the effective nucleation of
supercritical droplets. The generalization of formula (3.1)
for the case of the gradual creation, arbitrarily changing
in time, of the metastable state in vapor will be dis-
cussed in Section 5.

Let us analyze the variation of the « parameter and
concentration T(—eo), which is admiited by the condi-
tions of the theory applicability.

To begin with, let us consider the case where # > 1.
Condition (2.17) is the lower boundary of the ¥ param-
eter. On the contrary, conditions (2.18) and (2.19) are
the upper boundaries of this parameter. The most rigor-
ous of these conditions determines the upper admissi-
ble boundary of the k¥ parameter, In order to make con-
ditions (2.18) and (2.19) consistent with condition
(2.17), the inequalities

2 1 72
5—]75'0&(11”-?-::3)17;_5/—6 >1 (h>1), (3.4)
and
432 11
213/60”3:?&;5;; = i (h = }.) (35)

I

should be fulfilled. Once inequalities (3.4) and (3.5) are
fulfilled, we may begin with the calculations. The range
of concentration 1(—eo) variation admissible at i > 1 is
determined by condition (2.21).

Let us tura now to the h <€ 1 case. As before, condi-
tion (2.17) and contrary condition (2.18) are the lower
and the upper boundaries of the ¥ parameter. In order to
make condition (2.18) consistent with condition (2.17),
the inequality '

2 { al/Z

—_———— = |
1/2 5/6
3l 2un., +”s)v‘f’n

(h<1), (3.6

which is similar to inequality (3.4), should be fulfilled.
The range of concentration 11{—ee) variation admissible
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at i1 <€ 1 is determined by condition (2.20), which is the
lower boundary of the 1j(—c<) value and by the contrary
condition (2.22), which is the upper boundary of the
1)(—e°) concentration. The consistency of both these
conditions is secured by the inequality

3/2
3 2/3% i

—— D —_—
36T = 1079
2 Gy,

K < (h < 1). (3.7)

H

Similarly to condition (2.19), this inequality is the
upper boundary of the k parameter, which is additional
to constraint (2.1 8). In order to make condition (3.7) con-
sisteni with conirary condition (2.17), the inequality

3/2
3 Dnz/sz 1
1376 gy 1679

]

=1

(h < 1), (3.8)

which is similar to inequality (3.5), should be fulfitled.
Once inequalities (3.6) and (3.8) are fulfilled, we may
begin with the calcolations, The most rigorous of con-
ditions (2.18) and (3.7) determines the upper limit of
the ¥ parameter variation. Note that, aithough condi-
tions (2.19) and (3.7) are equivalent, they arc based on
different physical reascns.

Hence, both at /1 2> 1 and A <€ 1, the range of admis-
sible variation of the K parameter is identical in the cal-
culation algorithm. The wider this range, the weaker
constraints (3.4) and (3.5) at & <€ 1, and, correspond-
ingly, the weaker constraints (3.6) and (3.8) at 1 <€ 1.
The range of the 1)(—=) concentration variation is deter-
mined by inequality (2.21) at i > 1, whereasat h < 1,
by inequalities (2.20) and (2.22) which are consistent
because of consiraint {3.7). The adherence to inequali-
ties (2.21) or (2.20) may indicate which of these cases
(h = 1 or h <€ 1) takes place in a particular process.
Conceniration 1i(-—eo) is reflected only in formula (1.19)
or ineqgualities (2.20)-(2.22).

The larger the v, value, i.e., the more macroscopic
the condensation nuclei, the more rigorous (at 2 > 1
and h <€ 1) conditions (2.18), (2.19), and (3.7) in deter-
mining the upper boundaries of the x parameter, and [as
is seen from (2.6} and (2.7)] the condition (2.17) is ful-
filled less well. Note that this condition is the most nec-
essary condition for the theory, and it was taken as the
base for the calculation of the algorithm. The macro-
scopicity of condensation nuclei significantly simpli-
fies the theory of heterogeneous micleation of super-
critical droplets at the gradual creation of the metasta-
bie state in vapor, thus resulting in more rigorous
conditions of the theory applicability.

It follows from the discussion above that, for the
theory to be applicable, the v, value should not be too
iarge. Moreover, the control of the criterion (1.1) of the
macroscopicity of condensation nuclei and relevant
smallness [dne to condition (1.5)] of the threshold
value of vapor supersaturation is a rather important fac-
tor for the calculation of the algorithm.
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4. NUMERICAL CALCULATIONS
OF THE KINETIC CHARACTERISTICS
OF DROPLET NUCLEATION

Let us perform numerical calculations of all princi-
pal kinetic characteristics of the nucleation of supercrit-
ical droplets on macroscopic condensation nuclei at the
gradual creation of the metastable state in vapor. We
will adhere to the calculation algorithm formulated in
the preceding section. During the calculations, we will
analyze the results obtained and make some general
conclusions.

Let us set the following values of the external pa-
rameters of the theory:

a=10, a=10", n.=10"m>, n,~10" m™,

v=10"m>, 1=10"%s, (4.1)

D=10"m’s", v,=10°, m=1.

These data are rather realistic for a typical condens-
ing liguid (for water and its vapor at ambient tempera-
tures, as well as for passive gas at the pressures close to
atmospheric valaes). So far, we will not specify the val-
ues of the 1 parameter that determine the scaling time £,
and the values of initial concentration of condensation
nuclei 1)(—o0), thus extending the calculation possibili-
ties. The ranges of admissible variation of the x param-
eter and the 1(—e0) concentration we will determine
somewhat later.

As is seen from (4.1), inequalities (3.4) and (3.5) are
valid within rather large (and almost identical) exces-
sive ranges. Conditions (2.18), (2.19), and (3.7) are
almost equivalent and are virtually reduced to one and
the same inequality ¥ < 10° In accordance with this
inequality and condition (2.17), the range of variation
of the ¥ parameter admitied by the algorithm is the
interval

1<k <10, (4.2)

This range is sufficiently broad.

Using formulas (1.3) and (2.2) and allowing for (4.1},
we obiain

Lp=2.1x107, (4.3)
and
t,=4.1%107 s, (4.4)

Furiher, by formula (2.8) with account for (4.1),
we have
iL=65cs (1 <x <10, (4.5)

Hereafter, the range of possible variation of the x
parameter is governed by the double inequality (4.2).
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The measurement units are indicated in the relation-
ships for dimensional parameters.

Further, using (2.11) with the allowance made
for (4.1), we obtainat h > |:

N~15x10%" m". (4.6)

Ath > 1, the N value is given by formula (1.19).

By definition (2.6) and the ¢, value determined
according o (4.4), we obtain:

At=41%x10"% s. (4.7)

Then, using formula (2.13) with allowance for (4.1),
we find that

Ap=8.7x 10x, {(4.8)

where Ap is the dimensionless value.

Finally, by formula (3.1) and the {,, and 7., values
determined according to (4.3) and (4.4), we have

fy=l4xs (4.9}
taken at the time (as accepted in the theory) with the
reference to the moment corresponding to ® =
according to power approximation (1.14), The determi-
nation of the 7,, and 1, moments by formulas (3.2) and
(3.3) and known [according to (4.7) and (4.9)] values of
At and 1, is not difficult.

Equalities (4.3), (4.4), and (4.7) are valid irrespec-
tive of the value of the h parameter. Equalities (4.5),
(4.8), and (4.9) are true at both 2> | and & <€ 1. How-
ever, equality (4.6) is validonly at h > L Jat A <€ 1, the
A value is given by equality (1.19)].

According to (2.21) and (4.1), the admissible range
of the 1(—ve) concentration at i > | is determined by
the inequality

N(-e0) = 1.5% 167 m™

According to (2.20), (2.22), and (4.1), the range of
the 1}(—ce) concentration at # <€ 1 is determined by the
doubie inequality

(4.10)

38x10° 7 m™ < 1(-e0)

(4.11)
< 1.5% 10" m.

In view of relationship (1.19), the 1j(—e=) concentra-
tion and the number of supercritical droplets N lie in
this range. It is apparent from (4. 6) and (4.11) that, as
the 1{—c0) concentration lowers, i.e., as we pass from
inequality (4.10) to double mequahty (4.11), the num-
ber of supescritical droplets diminishes, although the
ever increasing portion of condensation nuclei takes
part in the nucleation of supercritical droplets. The con-
clusion about the decrease in the number of supercriti-
cal droplets N follows from (1.19), (2.11), and (2.22)
and, in general, from the proposed theory.

Fulfillment of criterion (1.1) of the macroscopicity
of condensation muciei and condition (1.5) of the smmali-
ness of the threshold value of vapor supersaturation is
indicated by the value of v, (about 10} accepted in
(4.1) and by equation (4.3).

According to (4.5), the scaling time f, of the
increase in ideal supersaturation, which (but not the
auxiliary magnitude 1) is the cxternal parameter of the
theory, varies within a wide range 6.5s €7, € 6.5 %

107 s that is very realistic in practice.

The values of the characteristics of droplet nucle-
ation, which are represented by relationships (4.3),
(4.4), and (4.7)—(4.9) seem to be also experimentally
realistic. Possible experimental determination of the 1,
time was discussed in {1]. According to relationships
(4.5) and (4.7), the scaling time ., of the creation of the
metastable state in vapor is much longer than the As
time of the duration of droplet nucleation. This conclu-
sion is also valid for the theory proposed that might be
proved by equalities (2.8) and (2.12).

The values of the most important of all kinetic chay-
acteristics (the total number N of the supercritical drop-
lets originating in the volume unit of the vapor—gas
medium) are given by relationship (4.6) at concentra-
tion 1)(-e) of the condensation nuclei satisfying ine-
quality (4.10} and by relation (1.19) at conceniration
(o) of the condensation nuclei satisfying inequality
(4.11). The range of possible values of NV covered by
relationship (4.6) is fairly wide and realistic. It is
extended from N ~ 10 m=? (when constraint ® <€ 10° in
(4.2) is still trae) to N ~ 101* i3 when constraint k ® 1
{4.2) is already fulfiiled. Moreover, the range of con-
ceniration 13(—e0} admitted by inequality (4.10) is also
fairly wide ang realistic.

At the same time, the range of possible values of the
N number covered by formula (1.19) and that of con-
centration Ti(—eo) [coincided with the aforementioned
range and admitted by double inequality (4.11)] are
rather wide and realistic. Near the lower boundary of
constraint (4.2), these ranges cover about five decimal
orders beginning with values of about 10° i and end-
ing with those of about 10'> m™, It is clear that at each
value of the « parameter satisfying constraint (4.2), the
range of 1j(—eo) concentrations at s 2 1 is not over-
lapped by the range of n(—-<) concentration at b <€ i,
because inequalities (4.10) and (4.11) are incompatible.

The kinetic behavior that is described by relation-
ships (4.5)-(4.11) involving parameter ¥ (chosen
instead of the scaling time 7, in the calculation algo-
rithin) is as obvious as that involving dependence on
time f£,,. Once we would like to pass from parameter K
to time £,,, we should only solve linear relationship (4.5)
with respect to K and then substitute the result obtained
into relationships (4.6)—(4.11).

The droplet radius K is a more appropriate experi-
mental parameter than the droplet “size” p iniroduced
by equality (1.11). In order to pass from p to R, we
should only employ evident relation R = (3v/4m)2p in
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(4.8). Using the volume v accegted in (4.1), this rela-
tion is reduced to R~ 1.3 x 10-p m.

The calculations performed demonstrated that
regardless of more rigorous conditions of the theory
applicability under the macroscopicity of condensation
nuclei, the theory proposed in [1] and employed in this
work makes it possible to make some predictions
within a rather wide range of the values of the external
parameters of the theory encountered in practice.

The nontrivial behavior of kinetic characteristics of
ihe nucleation of supercritical droplets on macroscopic
condensation nuclei at the gradual creation of the meta-
stable state in vapor is caused by the nonlinear, non-sta-
tionary, and nonlocal (in time) character of ihe process
of the nucleation of supercritical droplets. This behav-
ior was described by the theory and illustrated by the
calculations performed. It would be impossible to pre-
dict (even guantitatively) this behavior without studying
the process dynamics that was carried outin {1, 4, 5].

The smaliness of the vapor supersaturation in the
prethreshold range is indicated from relationship (4.3)
and the proximity of the preihreshold range of snpersai-
uration to its threshold value {,. The nucleation of
supercritical droplets occurs just in this particular
range; therefore, as was mentioned in the introduction,
macroscopic nuclei are indeed the active stimulants of
the vapor condensation af ite low degrees of supersafu-
ration. The high sensitivity of the kinetic characteristics
of the condensation process to the scaling time 7., of the
creation of the metastable state in vapor [demonstrated
by relationships (4.5)+4.9)] confirms the statement
(expressed in introduction) on the possible conirol for
the development of the condensation process and even
its mastering at the gradual creation of the metastable
state in vapor. The fixed value of parameter m 1a the
time-dependent power law of the creation of metastable
siate in vapor [according to (4.1), assumed equal to
unity] made it impossible to reveal (in the performed
calculations) the dependence of the kinetic characteris-
tics of the condensaiion process on this parameter.
However, this dependence actnally exisis; it is indi-
cated by equality (2.8).

5. GENERALIZATION OF THE THEORY
FOR THE CASE OF ARBITRARY
GRADUAL CREATION
OF THE METASTABLE STATE IN VAPOR

The power approximation (1.14) of the increase in
the ideal supersaturation ® with time ¢ was employed in
[1, 4, 5] and in this work. This approximation was used
from the moment when the ideal supersaturation © was
equal to zero. This mornent was iaken as the reference
moment f = 0. The moment 7, by which half the total
number of supercritical dropl%ts that originaie during
condensation had appeared was taken at the time axis
with reference to this initial tme ¢ was determined by
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formula (3.1). In this case, parameiers ¢, and m of
approximation (1.14) were assumed to be preset values.

Approximation (1.14) is only important in both
i1, 4, 5] and this work for the stage corresponding to
effective nucleation of supercritical droplets, ie., at
fon < t < Ly At this stage, according to relationships
(2.6 [1], the approximate equality

P = d)* 5.1
is fulfilled with a high degree of accuracy. Hence, in
view of (1.7), the relationship

@ =L, (5.2)

is also valid with a high degree of accuracy. The more
macroscopic condensation nuclel, the more accurately
relationships (5.1) and (5.2) are fulfilled. Hence,
approximation (1.14) is quite appropriate at a rather
low variation of the ideal supersaturation @ provided at
the stage corresponding to the effective nucleation of
supercritical droplets by relationships (5.1) and (5.2).

Obviously, the stage corresponding to the effective
nucleation of supercritical droplets is preceded by the
preliminary stage when a metastable state in vapor is
created externally bui supercritical droplets have not yet
appeared. At the arbitrary rate of external increase in
ideal supersaturaiion in time, the approximation (1.14)
can be invalid at the preliminary stage. However, due to
relationships (5.1) and (5.2), an increase in the ideal
supersaturation in time will be adequately described by
approximation (1.14) at the stage comesponding to
effective nucleation of the supercritical droplet when
approximation (1.14) is used in the theory.

However, in this case, parameters 7, and m of
approximation (1.14) will not be given in advance, but
should be determined by the raie of an increase in ideal
supersaturation @ specified externally. Furthermore,
the moment when ideal sopersaturation © was actually
equal to zero {denote this moment by #;) will not coin-
cide with moment 7 = 0 where, according to approxima-
tion (1.14), the ideal supersaturation @ was equal to
zero. Hence, moment 7, should be determined together
with parameters £,, and /m at the time axis convenient for
theoretical use where, according 1o approximation
(1.14), @, ., = 0. We may pass to time axis where time
is taken with the reference to the onset of the creation
of metastable state in vapor (which is more convenient
from experimental standpoint) only after the determi-
nation of moment fp. Once it is done, the position of
approximation (1.14) at this axis will be determined.

Let us demonsirate how the vajues of 1, m, and iy, as
well as the 7, value are determined at the gradual creation,
arbitrarily changing in time, of the metastable state in
vapor, We will rely on speculations reported in [6], taking
into account, however, that at the macroscopicity of con-
densation, nuclei relationship (1.7) (where the {, value is
known) is valid with a high degree of accuracy.

As before, we adbere to the Hime axis where, accord-
ing to power approximation (1.14), ®f,_, = §; this axis
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is convenient for the theory, however, it will be used
only at the stage corresponding to the effective nucle-
ation of supercritical droplets.

Hereafter, ®(s} is recognized (unless otherwise
stated) as the ideal supersaturation specified externally
and arbitrary Increasing with time. Hence

()| _, = (5.3)

Let us represent the ideal supersaturation () as
©(r) = (i - i), (5.4)

where the @ — 1) function describes the “switching
on” of the ideal supersaturation, i.e., its actual increase
in time ¢ - fytaken with the reference to the moment 4,
where ideal supersaturation @{r) was {in accordance
with (5.3)] actually equal to zero. Tt is the @(7 — #,) func-
tion of inclusion of the ideal supersaturation that is
employed to control externally the development of the
nucleation process of supercritical droplets with time.

Further, we assume that the ¢{r — #) function is
known, monotonic, and specified by the experiment,
ie., it satisfies the condition

O(r—t3>0 (5.5)

where the point denotes the derivative with respect to
time. According to (1.7), (5.4), and condition @ o =

®|,_,, . the equality

Pty — 1) = Ly, (5.6)

is valid. Because of the high accuracy of relationship
(1.7) at the macroscopicity of condensation nuclei we
put in (5.6) the sign of exact (but not approximate)
equality.

Let us choose the 7., and m parameters of approxi-
mation {1.14) so that at r = t i.e., in the moment I

most critical for the nucleation of supercritical droplets,
this approximation would secure the actual values of

the ideal supersaturation &(7) and its first @ () and sec-

ond ® (r) derivatives with respect to time. Taking into
account (1.7), (5.4), (5.6), and condition & = @| _ ,

we arrive at;

(12/1.)" = Lo, (5.7)
miy L =t — ty), (5.8)

and
mm— 1020 = §(r —1g). (5.9)

Because of a rather high degree of relationship accu-
racy (1.7) at the macroscopicity of condensation nuclei,
in {5.7) we used the sign of exact rather than approxi-
mate equality. Note that (5.7) is equivalent to (3.1).

When equalities (5.6)-(5.9) are fulfilled, approxi-
mation (1.14) will be fairly accurate at the stage corre-
sponding to effective nucleation of supercritical nuclei.
Correspondingly, the theory of the nucleation of super-
critical droplets on the macroscopic condensation
auclei under the conditions of the gradual creation of
the metastable state in vapor (which was proposed in
[1] and employed in this work) will also be quite accu-
rate. Inadeguate (and purely formal) description of the
actual increase in the ideal supersaturation with time
will be displayed only in the fact that the initial (for the
theory) moment f = 0 (when, according to approxima-
tion (1.14), ® = 0) cannot coincide with moment #;
where, in conformity with (5.3), @ is actually equal to
zero, This description is made at the preliminary stage
(which is insignificant for the creation of supercritical
droplets) by approximation (1.14). Once the moment 7,
is determined, the passage from f to time 7 — ¢, which
is more convenient for the experiment, will not be dif-
ficult.

Hence, the r, and m parameters are not specified in
advance, but are determined together with ¢, and 7_ by
the set of four equations (5.6)-(5.9) according to the
known (from experiment) inclusion function @2 — 1) of
the ideal supersaturation. Let us solve these equations,

In view of inequality (5.5), equation (5.6} may be
solved with respect tothe 1, iy difference, which is the
function of £, only:

La—tg = K(Gy). (5.10}

The introduced function £ is reverse with respect to
the ¢ function and is positive. It may be readily deter-
mined by the given function o.

Accerding to (5.10), the righi-hand parts of equa-
tions (5.8) and (5.9) will also be functions of {,,. Let us
divide these equations by equation (5.7) and introduce
the k,(C,,) and k(L) functions using definitions

k(G = Clpk()),
kZ(Crh) e !;rh(ﬁ(k(g:h))~

Once the ¢ function is kaown, the ¢ and @ deriva-
tives together with the k,({,,) and k,({,,) functions wil
be also kaown. As a result,

(5.11)

m o= kGt (5.12)
and
mm—1) = kz(f;m)ti. (5.13)
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We need only to solve equations (5.7), (5.12), and
(5.13) with respect to ¢, m, and ¢ " Dividing eguation

(5.13) by the square of equation {5.12), we obtain

2
= _ZM (5.14)
k(o) — k()
Then, using (5.12), we also obtain
k
1((;:1:) (515)

" R —ka(G)

Finaily, from (5.7) with aliowance made for (5.14)
and {5.15), we find that

o(G) =)

kl{grh) q kf(ﬁm)
1h

T R - k(G

As a result, formulas (5.10), and (5.14)-(5.16)
enable us to determine the f.., m, fo, and 7, values by the
experimental data on the rate of external increase in the
ideal supersaturation with time, i.e., the rate of the
external creation of the metastable state in vapor.

As is apparent from (5.4), (5.11), and (5.14), the
relationships m < 1 orm > 1 are predetermined by either
delayed or accelerated growth of the ideal supersa,mm-»
tion with time in the vicinity of the moment 7 =1,
by negaiive or positive values of the ky(£,,) functlon En
the case of an accelerated increase in the ideal supersat-
uration, for the posiiive vaiue of m to become final, the
following condition

(5.16)

k(G = Ky Gy > O (5.17)

should be fulfiled. This condition will be accepted
below.

According to (5.5) and (5.11), the inequality k(€
is valid. Together with condition (5.17) and fornmulas
(5.15) and (5.16), this inequality guarantees the fulfill-
ment of intrinsic inequalities s, > 0 and 7, > 0. How-
ever, in general, we can say nothing about the sign of
this parameter, although relationskip £, — ¢, > 0 follows
from (5.10) and inequality k(g,,,) > 0. 1t is obvious that
when the ideal supersaturation increases with time rap-
idiy at the preliminary stage, #; > 0. On the contrary, at
a low increase in the ideal supersataration at the prelim-
inary stage, we should have #; < 0.

Let us follow the passage io the case when the
power approximation (1.14) is valid throughout the
entire period of the creation of the metastable state in
vapor, i.e., when eguality o0 - 7)) = (#/t.)" is true.
Then, definitions stated in (5.10) and (5.11) vield the
relationships
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1/ -t/
k(Cm) = rmgm’", I(grh = th m,

w

m(m —1),..2/ (5.18)
ky(Co) = —““;3“’_@:3: "

oo

As might be expected, substitution of formulas
(5.18) into formulas (5.10) and {5.14)~(5.16) results in
equalities (3.1) and 1, = 0; it also confirms that the 1,
and m parameters actually coincide with the parameters
of approximation (1.14) fequality #, = 0 is also directly
indicated by {5.3)].

6. DISCUSSION OF THE RESULTS

Usually, an external increase in the ideal supersatu-
ration over the course of time 1s caused by the adiabatic
expansion of the vapor-gas medium. A one-to-one
interrelation between an increase in the ideal supersat-
uration and a decrease in the temperature of the vapor-
gas mediom during iis adiabatic expansion was
tevealed in [7]. This interrelation enables us to establish
how the ideal supersaturation increases with the
decreasing temperature of the vapor—gas medium. This
interrelation also makes it possible to determine the
temperature of the vapor—gas medivm and the equal
(under thermal equilibrium) temperature of the droplets
at the stage corresponding to the effective nucleation of
supercritical droplets, where the ideal supersaturation
reaches the values defined with a high degree of accu-
racy by relationship {(5.2).

An external increase in the ideal supersaturation
over the course of time may be due to the “pumping” of
vapor into the vapor—gas medium because of chemical
(for example, photochemical) reactions that take place
within it. If the pumping introduces a small amount of
vapor {which is the only thing required for the conden-
sation process to stait at macroscopic condensation
nuclei) and the fraction of passive gases in the vapor-
gas medium is large, the temperatures of this medium
and droplets will remain virtually constant in time.
Accordingly, it will be the same at the stage corre-
sponding to the effective nucleation of the supercritical
droplets at the very beginning of the creaton of the
metastable state in vapor

Hence, in both aforementioned cases, which are typ-
ical in practice, the temperaiures of the vapor—gas
medium and droplets may be easily found at the stage
corresponding to the effective nucleation of supercriti-
cal droplets,

It was assumed in this work that all condensation
nuclei are identical. As was shown in [1], in the actual
case of initial polydisperse nuclei, only the rather nar-

:ow {by the relative width) (about v;m ) pait of the ini-
tial size spectrum (adjacent to its upper boundary) is
responsible for the effective nucleation of supercritical

droplets due to the narrow prethreshold range of the
vapor supersaturation, provided that the nuclei are mac-
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roscopic. The generalization of this theory for this case
is mot difficult. It is only necessary to assume that the
total nuclei concentration in the indicated upper part of
their initial size spectrurn is nothing but the n{—o0)
valuae,
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