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Abstract—A system of integral equations defining the density profile for a flat liquid—vapor interface and cur-
vature corrections to this profile was used to examine the variation of surface tension with the drop radius using

the Yukawa and Lennard-Jones potentials.

INTRODUCTION

The objective of this work is to describe the thermo-
dynamic properties of large drops in the density-func-
tional approach. The radius of drops is taken to be large
enough that the surface tension can be described by the
first and second terms in the expansion of surface ten-
sion in terms of the surface curvature. As is well known,
the first term of this expansion represents Tolman’s cor-
rection. Thus, one of our purposes is to determine the
sign and magnitude of the limiting Tolman length. In
addition, we calculate the coefficient of the next term in
the expansion of the surface tension (effective rigidity
constant), which, in tarn, allows the Tolman length to
be evaluated as a function of the interface curvature.

DENSITY PROFILE
AT A LARGE DROP RADIUS

The solution is sought in the density-functional
approach [1]. Note that the version employed here
relies on the local, heard-sphere description of the con-
tribution related to intermolecular repulsion and nonlo-
cal description of long-range attraction, with no allow-
ance for long-range correlations (random-phase
approximation).

The equation of the density profile in a spherically
symmetric system has the form [1, 2]

mlp(N1-p+ [arpGw(le-r)) = 0, ()

14

where p(r) is the particle-number density profile for a
spherically symmetrical liquid—vapor system, L,[p] is
the chemical potential of the rigid-sphere system in the
Carnahan-Starling formulation [1, 2], |t is the chemical
potential of the system, w(r) is the long-range part of
the intermolecular interaction potential, and the inte-
gral is taken over the volume V of the system.

To describe the limiting case of a flat liquid—vapor
interface, it is convenient to introduce the variables 7 =
[r —1r'[, s = cosB (0 is the angle between vectors r and
r'—r), and z =r— R (R is the radius of curvature of the
drop surface). To find the solution to equation (1) in the
limit of a Jarge drop, we use the procedure proposed by
Blokhuis and Bedeaux [3, 4], who used the small
parameter d/R, where d is the rigid-sphere diameter.
The solution of (1) is sought in the form of expansion
P(r) = o) + Py(2)/R + Pa(2)/R2 + ..., where py(z) is the
density profile for a flat interface, and p,(z), p, @), ...
are corrections for curvature. The chemical potential of
the system also has the form p = p. + 4,/R +
W,/R? + ..., where |L,, is the chemical potential of satu-
rated vapor over a flat interface, and p,, U,, ... are the
corresponding corrections for curvature. Thus, equa-
tion (1) yields a system of coupled equations. The first
and second equations of this system have the form

o0 1
IaLPo(2)] — e+ 27 [dFF w(F) [ dspo(z + 57) = 0,(2)
0

-1

% pi(z) =1y
0P |p = pyta)

w 1 ' (3)
+2m J 47w () jds(po(z +§7)ST+py(z+ 7)) = 0.

0

The density profile py(z) and surface tension 6, of a
flat interface can be found by solving equation (2). The
solution to this equation was found earlier for the
Yukawa potential and the Lennard-Jones potential in
the Wicks—Chandler—Anderson formulation [1, 2].

Equation (3) was solved by an iteration procedure [2].
Typical p,(z) profiles at different temperatures are dis-
played in Fig. 1. A noteworthy feature of these data is
that the p,(z) curves show a sharp minimum (p(z) < 0)
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Fig. 1. First-order curvature corrections to the density pro-
file for a flat interface (1), = nd°p /6, z* = 2/d); the origin of
coordinates is on the equimolecular interface; T = (1) 0.7T¢,
(2) 0.6T,, and (3) 0.5T, where T is the critical temperature.

at z = O (transition layer). This implies that, around the
transition layer, the density profile for a slightly curved
surface lies below that for of a flat interface. A similar
behavior was reported by Blokhuis and Bedeaux [4],
who used, however, the gradient expansion method and
Landau @ theory and, hence, obtained symmetric pq(z)
and p,(z) profiles, resulting in zero Tolman length.

COEFFICIENTS IN THE EXPANSION
OF SURFACE TENSION IN TERMS
OF CURVATURE

At large radii of curvature of the interface, R, the
variation of surface tension with R is described by Tol-
man’s formula, o(R) = o..(1 — 26../R), where J,, is the
limiting Tolman length for R — oo. The thermody-
namic definition of the Tolman length is

8 = F(Rs)/(p]_pv)s (4)

where T'(R,) is the amount of adsorption on the tension
surface of radius R, and p, and p, are, respectively, the
volume densities of the liquid and vapor phases at a
given chemical potential. In the limit of large R, we
obtain from (4) the most often used expression for 3,.:
3. =(R.— Ry)| Ry o> where R, is the radius of curvature

of the equimolecular interface, for which I'(R,) = 0. R,
can be found as

R: = —2R2 + 6R:0e3(Re)/(pl - pv)» (5)

where p, and p, are pressures in the liquid and vapor
phases, respectively.
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Tolman’s formula holds for any interface, and the
limiting Tolman length is independent of the interface.
If not only first-order but also second-order terms are
retained in the expansion of surface tension in terms of
curvature, the coefficients of the second term in the
expansion will be different for the equimolecular and
tension surfaces. The surface tension on the equimolec-
ular interface can be written as

G,(R.) = 6.(1-28./R,+%/R2). 6)

Blokhuis and Bedeaux [3] obtained integral rela-
tions for the limiting Tolman length .. and effective
rigidity constant k. For 8., they obtained two expres-
sions:

T g [ (@)
8. = _4‘0mjdz;[d7r dr
0

—

: (7)
X jdsu -39)p(z, 2+ 57, 1),

-1

s im ‘w ~3dw(r)

3. = 4o, J dz_[ g

1
x [ds(1-35")(2z +s7)p( (@ 2+ 57, F),

-1
where p\o (z, z + 57, 7) and p(lz) (z, z + sF, T) are,
respectively, the zero-order and first-order terms in the

expansion of the two-particle distribution function in
terms of 1/R,. For x, they obtained

oo

_ K ~3dw(r)
k= 40‘,,,sz.[d;r dr
—a

1
x Jas|(1-3) 2+ sipP@z+siF) O
-1
;232
- -3—(3 ~55")p$P(z, 2 + 57, 7‘)}.

In calculations by formulas (7)—(9), we use the po(z)
and p,(z) profiles obtained in this work. In the random-
phase approximation, the two-particle distribution
functions can be represented as

P (@ 2+ 57 T) = pol2)paz +57), (1)

PPz, 2+ 57, F) = po(2)p,(z +57) + P, (2) Polz + 57)-

CALCULATION RESULTS
AND CONCLUSIONS

Figure 2 displays the temperature dependences of
d,, calculated for a wide temperature range below the
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Fig. 2. Tolman length, 8: = §,./d, as a function of temper-
ature, T* = T/T.: (1) Yukawa potential, (2) Lennard-Jones
potential,

critical point by formulas (7) and (8) with consideration
for (10). The results are seen to coincide within the cal-
culation accuracy. A similar variation in 8_ was
reported by Van Giessen ef al. [5], who used only one
formula, which can be reduced to (8). Our results dem-
onstrate that §,, is small and negative and rises slightly
in magnitude with temperature. This implies that the
surface tension approaches the limiting value from
above, as pointed out earlier in [2, 5-7]. Moreover, the
calculated 8, values agree with those obtained by Koga
et al. [6], who calculated the entire dependence of sur-
face tension on drop curvature. All of the present for-
mulas for 8, were calculated in the random-phase
approximation, which was, however, differently intro-
duced. The fact that these formulas yield identical
results within the calculation accuracy suggests that the
random-phase approximation provides a sufficiently
accurate value of the limiting Tolman length in the
framework of the density-functional method.

The small limiting Tolman length implies that, at
large drop radii, ¢ is a weak function of R. At the same
time, at small drop radii, surface tension varies substan-
tially with R [2, 6, 7], but the Tolman formula is inap-
plicable because, along with the first-order correction
for o(R), a significant role is played by higher order
corrections, in particular the second-order correction
with the coefficient x in (6).

Calculations of x by formula (9) for temperatures
below the critical point (Fig. 3) show that ¥ is negative
and rises in magnitude with temperature. Thus, the
curve of surface tension for the equimolecular surface,
described by formula (6), shows a maximum, in agree-
ment with earlier data [2, 6, 7].

Baidakov and Boltachev [7], consideripg a van der
Waals system, argued that two coefficients of the
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Fig. 3. Effective rigidity constant, k* = k/d2, as a function
of temperature T*,

expansion are sufficient to describe surface tension if
the radius of curvature is not too small. This implies |
that formula (6) can be used not only in the limit of very
large R.. To check this statement, consider the G,(R.)
curves (Fig. 4) plotted with the use of formula (6) and
those obtained by direct calculations relying on the
total density profile of a spherical drop [2] (as pointed
out above, the accuracy of these calculations is fairly
high at a sufficiently small drop radius). It can be seen
that the curves obtained with the Lennard-Jones poten-
tial are indeed closely similar at all temperatures below
the critical point.
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Fig. 4. Surface tension 0: (o* = nd’/6kT, where k is the
Boltzmann constant) vs. radius of curvature of the equimo-

lecular interface, R: = R,/d, for the Lennard-Jones poten-

tial at T'= 0.517; the horizontal line indicates 13: .
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Fig. 5. Tolman length, §* = 8/d, vs. radius of curvature of the
tension surface, R: = R, /d, for the Lennard-Jones potential
at T= 0.51T,; the horizontal line indicates 37, .

The Tolman length 8(R) can be calculated by two
procedures: First, we write formula (4) in the form

8 = (R2-R)/3R: (11)
and use definition (5) of R, which can be transformed,

under the assumption that formula (6) is valid at any R,,
to the form

RS
3 ’ 2 (12)
= R.[-2+3(1-28./R,+x/R;)/(1-28../R,)].

Second, we use the approximate formula

§ = R.—R,. (13)
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Figure 5 displays the 8 plots calculated by formu-
las (11) and (13). It can be seen that the Tolman length
tends to the negative value 8(R,) for R — eo; at suffi-
ciently small R, 3., becomes positive and depends on
the calculation procedure.
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