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Abstract—The exact concepis of the dividing surface related to the metrics of an arbitrarily curved surface
laver and the transverse surface tension as the excess surface value with respect to the normal component of
stress tensor were introduced. It was shown that, in the absence of external fields, there will be a dividing surface
in a slightly curved surface layer. This dividing suiface satisties the zero value of iransverse surface tension and
coincides with the tension swrface. When external fields are present, the tensors of excess surface and linear
stresses are three-dimensional parameters, whose dimensions generally cannot be diminished by the selection of
the positions of dividing surfaces and lines. At the same time, the conditions of mechanical equilibiium for curved
surfaces can be formulated without using the transverse surface tension. The conditions of mechanical equilibrium
at the contact line include the transverse tension of a line and the normal components of linear tension.

1. INTRODUCTION

The key point of a theory of plane and curved inter-
faces is the concept of a siressed swiface (tension sur-
face) substituting for the real surface layer. Undoubt-
edly, the introduction of such an image for the plane
surface layer should present no problems, but it
becomes sensitive when passing to curved surface lay-
ers. As is known [ 1], Gibbs proceeded from the funda-
mental equation .

dU = TdS+ydA+ pdN,
j (L.1)

where U, §, and N, are the excess energy, entropy, and
mass of component / related 0 a certain daividing sur-
face with tension v and area A; T is the temperature;
1; is the chemical potential of ith component; ¢; and ¢,
are the principal curvatures of the dividing surface; and
C and C, are the corresponding bending moments (per
uitit surface area). In equation (1.1), Gibbs employed
the identity transformation

Cidcl + C2d62 = BdH + @dD, (1.2)

where I =(c; + c,)/2 is the mean corvature, D={e, - ,)/2
is the deviation curvature, 8 = C; + C; is the beading
moment, and © = C| — G, is the torgue of a surface [2].
Assuming also that I = 0, Gibbs demonstrated that
there is a position of the dividing surface (tension sur-
face) where B = 0. Note that, for slightly curved sur-
faces, breaking the condition I = 0 means simply that
one of the curvatures (for example, ¢,) may be taken as
equal to zero. The tension surface may then be found
from the condition C; =0.

If we digress from the case of a spherical surface
(where D = 0 is strictly fulfilled), we may state that
Gibbs created the theory of slightly curved surfaces.
This event is of profound importance. The Gibbs
method per se, when the substance excess (in fact,
“smeared” over the entire surface layer) is related to the
dividing surface, suggests that the surface is studied at
distances that are much larger than the thickness of the
surface layer. The smailer the radins of curvaiure, the
larger will be, for example, the error when the real
moment of excess mass of the surface layer is replaced
by the moment related to the dividing surface.

The following circumstance is also of importance,
Bodies with a nonspherical shape have a surface with a
variable curvature. If the curvature is small, its change
is also small; it may then be assumed that the surface
energy is determined locally by the curvature of the sur-
face, as suggested by equation (1.1). If the gradients of
curvature are large, the applicability of equation (1.1)
as the local relation becomes questionable because,
strictly speaking, the surface energy should depend
both on the curvature and its gradients of all orders of
magniiude, similar to the dependence of the local free
encrgy of heterogeneous systems on the density gradi-
ents of all orders of magnitude (although in theory one
is usually restricted by the second gradient). In general,
n a highly curved surface of variable curvature, the sur-
face energy becomes a functional of the surface shape,
and a local formulation of the fundamental equation
becomes difficult. Hence, both the condition D = 0 and
the pattern of fundamental equation (1.1) correspond to
the case of a slightly curved suiface.

Also note that, since the surface tension is depen-
dent on the surface curvature, the curvature anisotropy
inevitably causes anisotropy of the surface tension,
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Only the condition of small curvature makes it pos-
sible to assume that the surface tension is isotropic, as
was done by Gibbs. Therefore, the passage to highly
curved surfaces should be combined with taking into
account the anisotropy of surface tension (it was Buff
[3. 4] who did so first); the dependence of the surface
tension on the curvature results in a change in the sur-
face tension along the surface of variable curvature [5].

Attemipts to meodify the Gibbs theory have con-
cerned mainly the conditions of mechanical equilib-
rium involving the surface tension (especially, the
Laplace equations) {2-9]. The first attempt to derive the
conditions of equilibrium taking into account the lincar
and pointwise phenomena based on the fundamental
equations and the variation method was only inade
in [10]. However, the fundamental equations and the
concepts of surface and linear tensions were deter-
mined in the wrong manner (the inadequate treatment
of surface tension in {10] was discussed in detail in {71).
The thermodynamics of linear phenomena in the
absence of fields was considered in [11], and in this
work we would like to proceed further, focusing our
attention on the conditions of mechanical equilibriom.

Note that it is not necessary to derive these condi-
tions from the fundamental equations (in addition to
encountering some difficulties at large curvatures, as
was mentioned above for the surfaces). The conditions
of mechanical equilibrium are simple, in such a way
that they always correspond to a zero net force acting
on an iselated object or its part. However, dealing with
vectors, we should know where they are directed.
Hence, the first question that must be answered before
starting to study, for example, linear interfacial phe-
nomena, is the following: does the direction of a force
of linear tension coincides with that of a line itself, or
not? Naturally, the same question arises also for the sur-
face tension. The exact answer is known only for a
plane surface [12] and the problem of the three-dimen-
stonal pattern of a tensor of surface tension are essen-
tially undiscussed in the available reviews [13-15].
Therefore, in order to pass to the contact line, we
should consider the general problem of a curved inter-
face.

2. METRICS OF A SURFACE LAYER
AND THE DIVIDING SURFACE

A surface is a geometrical concept, and it is physi-
cally set only in the case when a phase (for example,
nonvolatile and insoluble solid) has a boundary surface,
When the passage from one phase to the other proceeds
continuously, the dividing surface is introduced in an
artificial manner. Gibbs [1] defined the dividing surface
as the geometrical surface that passes inside the surface
layer (or near this layer) through the points arranged in
a similar manner with respect to the adjacent substance.
Let us refine this definition using the methods of differ-
ential geometry. The surface layer is a real three-dimen-
sional body, which is formed under the influence of
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intermolecular interactions and external fields. As a
result, the molecules are arranged and oriented in space
and are characterized by a certain curvature and very
large gradients of the local properties of the substance,
At each point, the direction of the gradients may be
related o the curvilinear coordinate (144), and we may
introduce the normal (to this coordinate) coordinate
surface of two other curvilinear coordinates (u,, i),
Treating the surface layer as the Riemann space, we
may characterize it by the metric tensor § with compo-
nents

3
gix=F, T, = Z(axj/au,-)(axj/auk)
j=1

(i, k=1,2,3),

2.1)

where 1 is the radius vector of the point in space; r, is

its pariial desivative with respect to curvilinear coordi-
nate u; (vector r, is directed along the tangent to coor-
dinate line u); x, = x, x; =y, x; = z are the Cartesian
coordinates of the space; and the scalar product of vec-
tors is shown by the dot. As is seen from (2.1), the
orthogonal system of curvilinear coordinates diagonal-
izes the metric tensor: only the components g; remain
in this tensor {their square roots are also known as the
Lamé coefficients h; = r, = A,/g_”, they result in ele-
ments of the length of coordinate lines dl; = hdu)). The
coordinate surface «,, i, of such a coordinate system
will be called the dividing surface. In other words, we
define the dividing surface as the coordinate surface of
a system of orthogonal curvilinear coordinates {(which
diagonalizes the metric tensor of a suiface layer) nor-
mal to the direction of gradients.

The equation of the dividing surface is set by the
condition

(2.2)

However, the value of constant uy, remains to some
extent arbitrary in magnitude; i.e., any coordinate sur-
face within the surface layer or near this layer may be
chosen as the dividing surface, In a symimetiic spherical
system, such surfaces may be represented by spheres of
various radii; this is a typical case where the coordinate
surfaces are conformal to each other. In the general
case, the coordinate surfaces should not always be con-
formal, because the dependence of their shapes on cur-
vilinear coordinate u, is governed by the metrics of the
surface layer. In other words, the passage from one
position of the dividing surface to the other is not
always possible by the simple displacement of each
part of the surface along the normal, as was done by
Gibbs, Buff, and other authors. As applied to finite
changes, this procedure is approximate and may be
substantiated by the small curvature and thickness of
the surface layer when the section of coordinate line u,
within the surface layer is so small that it may be

Uy = U3y = const.
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assumed to be linear. As will be seen from further dis-
cussion, such a procedure is unnecessary. For differen-
tial operations, when we are dealing with an orthogonat
coordinate system, the differentiation with respect to
the length of the coordinate line 1, may be exactly
replaced by differentiation with respect to normal N to
the dividing sutface

dN = dly = hydus,. (2.3)

The dividing swface has a network of coordinate
lines and its own metrics, which is characterized by two
important positions. First, according to the Dupin theo-
rem from differeniial geometry, the coordinate Iines in
a chosen system of orthogonal curvilinear coordinates
coincide with the curvature lines of the dividing sur-
face. This implies that the curvatures ¢, and ¢, of the
dividing surface in the directions of unit vectors e, and
e, corresponding to u; and u, are the principal curva-
tures (maximal and minimal of afl surface curvatures at
& given point). Secondly, as a result, the simple Rod-
rigues formula

n

i = TaC

i ('l = 1’ 2) (24)
is valid. Here, n is the unit vector of a normal to the
dividing surface. This formula indicates that the change
in the surface orientation during its movement along
the coordinate line is determined exclusively by the
curvature in this direction. Taking into account (2.3),
the following geometrical relations for the displace-
ment of a unit part of the dividing surface along the

coordinate line 1, are also valid:
am[,-/hg,au:; = ah]h,/h3au3 = C,’ (l. = 1, 2). (2.5)

These relationships will be needed in further discus-
sions,

3. PRESSURE TENSOR

The mechanical state of a two-phase system that
inciudes the surface layer, is characterized by sefiing

the field of stress tensor E(r) or pressure tensor p(r)
(they differ only in the sign). The latier is more widely
applied to fluid systems, and we will use its symbols.
The force acting on the unit volume of a system is
composed of the contact force -V i (here, the diver-
gence of the pressure tensor is represenied by its scalar
product multiplied by the vector of the Hamiltonian
nabla operator) and the volume force f of the external
field. Under mechanical equilibrium, these force com-
ponents balance each other, so that the condition

Vp =t (3.1)

is fulfilled. Because the pressure tensor includes only
the short-range contact forces (albeii affected by the
external field), we may believe that its meirics corre-
spond to that of the surface layer; hence, the pressure
{ensor is typically diagonalized in the same system of
curvilinear orthogonal coordinates that diagonalizes
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the metric tensor. Restricting ourseives to this case and
denoting the principal values by py, p;, and p,, we rep-
resent vector equality (3.1) in the form of three scalar
relations:

aPl

ah’]hz 3
h‘""—"laui +(p ‘Pz)h—'“Eau] +(p —p3)h——-_13”; = fi
aP2 ( )alnh1
h,du, P o, 32
dlnk, ‘
+(py— Pa)h ot = f2
N dink, dlni,
_h3au3+(p3 )h 3t +{p; Pz)h Sus = fi

where h; and f; (i = 1, 2, 3) are the Lameé coefficients and
vector components § in the coordinate directions,
respectively. In the particular case of a flat surface
layer, the chosen coordinate system is transformed into
the Cartesian coordinate system (h; = h, = h; = 1), and
only the first summand remains in each line of the left-
hand part of (3.2). Conditions (3.2) then indicate
explicitly the variations of pressure tensor components
P1 = Py P2 = Pra, and py = py along their coordinates in
the external field:

dpp/ox = f,, dppldy = [,

23

Az = £y (33)

For example, for the gravitational field (ff =0, =0
fi=pg, where p is the local density of a substance and
g is the acceleration of free fall), equation (3.3)
acquires the form of the barometric formula:

dpmifox = 0, dppfdy = 0, dpyldz=-pg,
(3.4)

provided that the z-axis is directed upward. In the
absence of an external field (f = 0), all three pressures
Pr1> Pt and py remain constant along their coordi-
nates, the equality of pressures in the contacting phases
resulting from the constancy of py.

In the case of spherical symmetry (that is not dis-
turbed by the external field), the chosen coordinate sys-
temn is transformed into the spherical system (1, = 8,
Wy=O, ity = F, pi= Py = pp, Pry = P 0 = 7, By = F5ind,
hy=1,fi=f =0, f3 = f), and conditions (3.2) acquire
the following form:

op/o8 = dpfop = O,
dpn/or + U py—prifr = f,

where the first two equalities provide the condition of
constancy of tangential pressure in the tangential direc-
tion, while the third interrelates the normal and tangen-
tial pressures. Although spherical symmetry is possible
also in rare cases in the presence of a field (for example,
in the presence of a ceniral electric charge in a droplet),
it is more typical of capillary bodies in the absence of a

(3.5)
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filed. At f= 0, the relation between pr and py provided
by equation (3.5) is represented also in the form [16]:

d(prHId () =

We retuin to these relations later,

(3.6)

4. TENSOR OF EXCESS SURFACE STRESSES

Taking advantage of the common procedure for
excess values [11, let us introduce the tensor of excess

surface stresses [ (u,, 1, 43) for an arbitrary position of
the dividing surface. To this end, let us single out (by
circular rotation of the normal coordinate line ;) the
extremely narrow “flow tube” of the coordinate lines i,
passing through many coordinate surfaces (u, u,), each
of which may be chosen, according to equation (2.2), as
the dividing surface, Upon passing through each sor-
face, the tube cuts the small area

A= [112 = h;thulAuz (4.1)

varying from surface to surface and dividing the vol-
ume of a tube into volume V* form the side of the o
phase and volume VP from the side of the [} phase. For
definiteness, let us chose the notation so that o corre-
sponds to the phase with the larger pressure (if both
principal curvatures are of the same sign, this phase
represent the phase on the concave side of the surface
tayer).

If the surface layer inside a given flow fube extends

between the coordinates #3 and ), the tensor of
excess surface stresses is determined by the relation

E = (1/4y)

Iyg ug 7
j’(g‘)”‘ P)Ahsdits + j ("~ pYAhsdus |,

uy 3 Hip

(4.2)

where Ag = A(uyg) is the cut-out unit area related to the

dividing surface with coordinate usg, and p™ and f)ﬂ
are the values of the pressure tensor in bulk phases
extrapolated to the region of the surface layer. Note that

the values of u3 and u% may readily be taken already

during the passage to the bulk phases, because in this
case the integrands vanish and nevertheless the integra-
tion is actually performed with respect to the parts of
the surface layer adjacent to the o and {3 phases. Rela-
tion (4.2) determines the value of the tensor of excess
surface stresses averaged over the small area of the divid-
ing surface. Using expression (4.1) for A and Ag, compos-
ing the A/A, ratio, and passing to the limit Auy; — 0,
Auy — O in this expression, we obtain the exact local
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definition of the tensor of excess surface stresses at any
point of the dividing surface

E = (Uhih)| [ (D" BYihahsduy

w
iy

(4.3)

o

+ j‘ G ~ Py hohaduts |.

LEN

Differentiating (4.3} with respect to the position of
the dividing surface (i.e., with respect to coordinate 1)
at a fixed physical state of a system, assuming that even

in the presence of a field the values of p* and ;"9'3 donot
depend on the position of the dividing surface, and
usmg (2.5), we arrive at the following equation:

az_i—i'/hﬁuw + j_:‘.?(cl +o,) = jﬁva(um) - @B(um), (4.4)

where the values of the pressure tensor in the bulk
phases extrapolated to the coordinate i of the dividing
surface are present. As is seen from (4.4), the tensor of
excess surface siresses is dependent on the position of
the dividing surface.

In general, the tensor of excess surface stresses is a
three-dimensional tensor, so that expressions (4.3) and
(4.4) may be written for each of i{s three components.
Two tangential components form the tensor of the sur-

face tension § with components

LETY

Y =En = h I(PT: priyh hohsduy
hiohag
“ (4.5)
H_E
B~ pr)hhohsd
+ | (pr1 = Prdhahsdus |,
g
'YzEETZ = h I(P'm Pra)fhahadus
highag
(4.6)

l(g

+ j (sz = pyhihohadus |,

Hay

and the normal component may be called the transverse
surface tension Yy:
COLLOID JOURNAL  Vol. 61
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R
j (Pgi = pr)hhphsdu,

iy

_ i
N —
hiphag

Yu=E

4.7

ug

+ [ (PR = padhihahsduy |.

Hap

Correspondingly, from (4.4) we have
Y1/ hsdusg + Y {c +0y) = P%1(”30) - Pgl(”m), (4.8)
0Yal hyOusy + Yo(e) + €2) = pTolu) ~ PBTz(”_w)s (4.9)

Yl hyBuzg + V(e + 03) = puluz) —Pg(“_w)- {4.10)

In the absence of a field, the values in the right-hand
sides of these equations are constant, whereas in the
presence of a field these values are the functions set by
the equilibrium conditions (3.2) as applied to the bulic
phases.The dependence of (¢, + ¢;) on u; is set by the
metrics of the surface fayer. Thus, in each particular
_ case, differential equations (4.8)—(4.10) may be solved,
and the dependence of each component of the pressure
tensor on the position of the dividing surface may be
obtatned in explicii form. If the bulk phases are isotro-
pic, the same value is present in the right-hand sides of
equafions (4.8)—(4.10). However, as these equations
demonsirate, the change in each component of the sur-
face tension during the imaginary displacement of the
dividing surface depends on the value of the compo-
nent; because the values of v,, .. and v, are different,
their changes will also differ, although they are
described by the same differential equation.

Among the relationships mentioned above, we are
most interested in the relations concerning the trans-
verse surface tension, because it is this tension that rep-
resents the three-dimensional aspect of the surface ten-
sion, and because it is scarcely investigated. However,
for comparison, it is reasonable also to involve the other
components of the surface tension and to continue our
discussion with the most studied cases, the planar and
spherical surface layers.

5. TRANSVERSE SURFACE TENSION
OF THE PILANAR SURFACE LAYER

For the planar surface layer, the relationships
(4.5)-(4.10) acquire the following form:

7p &

o= {5 - pedde+ [(Bhi - prdds, D)
P ‘o
Zn 2

T2 = f (p%—pTz)dZwa{pE?z—pm)dz, G2
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Z i
o= [oi-pde+ [(PR-pde.  (53)
z g
dy/dzy = pii(zo) - Ph(zo), (5.4)
dvaldzy = pra(ze) - Phalzo), (5.5)
dynldzy = pR(zo) — P(zo) (5.6)

(partial derivatives are transformed into the total deriv-
atives, because all local values now depend only on z).
In accordance with (3.3), in the absence of an external
field, the normal component of the pressure tensor is
independent of the position inside the surface layer

[Pl2) = P = pﬁ ], and hence vy = 0, irrespective of the

chosen position of the dividing surface. In this case, the
tensor of excess surface stresses is a two-dimensional
tensor even for solids {12]; hence, it implies that the
forces of surface tension are directed along the siface,
In other words, in this case, any dividing surface is
nothing other than the tension surface.

The situation is changed in the presence of a field.
In this case, the transverse surface iension is not equal
to zero even for the planar surface, and it may be illus-
trated by the direct calculation of the iransverse surface
tension in a gravitational field using formula (5.3). Let
the o phase be heavier and placed betow, while the 3
phase is located above so that the z-axis is directed from
the o phase toward the B phase. Using barometric for-
mula (3.4) for both the bulk o phase and the surface
layer, we have

PR = () = g[(p-pP)dz=gT(),  (5.7)

o
Z

where

(@)= [(p-p™)dz (5.8)

Z

is the current value of mass adsorption from the side of
the o phase (the boundary condition p=p® at z =z% was
taken into account). Similarly,

Pu@) - pr(2) = [ (p-p")dz=—gT"(2), (5.9)

A

where

P

@)= [(p-phdz (5.10)
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is the current value of mass adsorption from the side of
the B phase. Substitution of (5.7) and (5.9) into (5.3)
vields

#

Tn =& ffu(z)d2wjrﬂ(z)dz . (5.11)

Assuming that the local density of the matter in the sur-
face layer decreases monotonically while moving
upward from the o phase to the B phase, we have
T'*z) < 0, TR(z) > 0, and consequently ¥y < 0. In this
case, the transverse surface tension is negative; L.e., in
essence, it is transformed into the transverse pressuse
created by the field.

Differentiating (5.11) with respect to z,, we obtain

dynldzy = g[T%(ze) + Tze) 12T (20),  (5.12)

where I'(zy) is the total mass adsorption (mass excess
per unit surface area) of a substance related to the divid-
ing surface by coordinate zy. Substituting now (5.12)
into (5.6), we arrive at the condition of mechanical
equilibriom {3]

Pr(ze) — PR(z0) = 8T(20)- (5.13)

While treating the dividing surface as a two-dimen-
sional stressed membrane, formula (5.13) represents
the trivial fact that the a membrane in a gravitational
field may affect the interfacial pressure drop only by its
own mass, It is known [and is seen from the combina-
tion of (5.8) and (5.10)] that the value of the total
adsorption depends on the position of the dividing sur-
face. Because I'® and TP, as we saw, are characterized
by different signs, it is always possible to find a position
of the dividing surface within the boundaries of the sor-
face layer such that the total adsorption is nullified.
Condition (5.13) then acquires the same form as in the
absence of a field (the equality of pressures in contact-
ing phases). However, the transverse surface tension
does not vanish and it is still negative, thus continuing
to be the specific indicator of an external field.

6. TRANSVERSE SURFACE TENSION
OF THE SPHERICAL SURFACE LAYER

As applied to the spherical surface, relationships
(4.5)—(4.10) acquire the following forms:
T = Y257
B

iy r

1 a
= 5| —pT)r'2d7'+_[(pﬂ—pT)r2dr ;
g b

6.1)

o
]

e w '
T = 5| [0 - portdr+ [P - poidr |, 62)
ol % _ .

o
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dyldry+2Y1ry = p™(ro) - p(r). (6.3)

dyldro+ 24wl = p"(re) = p(rg).  (6.4)
Formulas (6.1) and (6.3) are well-known for the case of

the absence of exiernal field. Formula (6.1) demon--
strates that the surface tension of an arbitrarily chosen

dividing surface is always equivalent to the real surface

layer with respect to the force moment. Formula (6.3)

is the Kondo equation for the dependence of the surface

tension on the position of the dividing surface (simulta-

neously, this equation is the generalized Laplace equa-

tion). Two other relationships, (6.2) and (6.4), have

received less recognition, although they are no less

important. It should be emphasized that, irrespective of

the identical forms of eguations (6.3) and (6.4), the

dependences for the normal and transverse surface ten-

sions are different in principle. From a purely mathe-

matical viewpoint, this is explained by the different

signs of the integration constants inr these equations. As

is known, integration of the Kondo equation yields

Y = 1l p*(re) = PPUrd 13+ K Irg

where constant K is positive (according to Buff, 41K is
the work of formation of a droplet of the o phase from
the 3 phase), because the surface tension should always
be larger than zero in accordance with the condition of
stability. Hence, the y(ry) function lies completely in
the region of positive vahies and is characterized by the
only minimum corresponding to the tension surface
{where dY/dry; = 0 and (6.3) is transformed into the
Laplace equation]. The integration of (6.4) results in a
similar expression

(6.5)

vn = rolp®(ro) - PP (o) 13 + CIrj (6.6).

where, however, C < 0. Indeed, because py decreases in
the radial direction, it follows from (6.2) that vy should
have a negative value at ry — 0. On the other hand, vy
is positive at r, —= P, so that inside the surface layer
there will always be a position of the dividing surface
for which vy = 0.

Let us check whether this position coincides with
the tension surface or not. The latter is determined by
the condition of equivalence both with respect to the
force moment [as shown in (6.1)] and to the force itself,
which is expressed by the condition [16]

B

1 [4] y I
Y= ’—:0 I(P —pT)rdr+I(pg—pT)rdr .
0

o

6.7

Relationships (6.1) and (6.7) are two equations for find-
ing the values of y = v, and ry = r, corresponding to the
tension surface. Excluding vy from these relations, we
obtain the following equation [16]
COLLCID JOURNAL  Vol. 61
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7, B

[2" = po)r = ryrdr+ [(5° = pr)r = ryrdr =0,
0 v

5

(6.8)

The unknown valzes are separated, and now we have
only one equation, which unambiguously determines
- the position of the dividing surface that satisfies both
equations (6.1) and (6.7). Using (3.6), it is easy to
reduce (6.8) to a simpler form:

T, P

[0* = prtdr+ [ (0" - pi’dr = 0.
0

Ts

(6.9)

Comparing now (6.2) and (6.9), we note that, upon sub-
stitution of the value ry = 7, into (6.2), the transverse
surface tension 7Yy inevitably vanishes. Thereby, we
prove condiiion

Tn=0, (6.10)

which means that the tensor of excess surface stresses
is a two-dimensional parameter, and is simuitaneously
the equation that deterimines the position of the tension
. surface in the absence of an external field.

It would be unreasonable to extend this conclhusion
auvtomatically to the case of the presence of a field. As
is seen from (3.5), in the presence of a field the pattern
of the normal component of the pressure tensor
becomes complicated; and if we could not reach a zero
value of the transverse surface tension for the plane sur-
face in the gravitational field, moreover, this would
hardly be possible for the spherical surface. Since
spherical symmetry is typical of bodies in the absence
of a feld, we consider the case of the curved surface in
a field for the more common nonspherical case.

7. THE SURFACE OF AN ARBITRARY SHAPE
IN AN EXTERNAL FIELD

Addressing the general definition of transverse sur-
face tension (4.7), we may state the following. Under
equilibrium and in the absence of a external field, the

values of py and pﬂ, are consiant, and the values of

integrals are determined by the patiern of the pu(i,)
function. This value is known exactly for the case of a
planar surface layer when py is constant, which is a par-
ticular form of monotonic dependence. It should then
be reasonable to suggest that this dependence remains
monotonic also for the curved (or, at least, slightly

curved) surface, and under our choice of pp > pE] . P

decreases while passing from the o phase to the B phase
through the surface layer. Tndeed, if the extrema of py
had existed, it would be difficult to understand why

they vanish during the leveling of the values of py and

pﬂ (the extrema disclosed in numerical experiments
[17] with synall clusters, which do not obey the Laplace
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equation, should not be iaken into account during the con-

sideration of equilibrium systems). If py > py > p{i , the

integrals in (4.7) will acquire different signs. Placing
the dividing surface alternately into the extreme posi-

tions uy = w3 and uzy = ug . we obtain Yy < 0 and ¥y > 0,
respectively; consequently, we may find inside the sur-
face layer the positton where Yy =0, i.e., where the con-

dition (6.10), which we introduced for the tension sur-
face, is fulfilled.

Problems arise only in the case of such a large cur-
vature that the surface layer is not realized to a full
extent, and the bulk phase is absent from the inner side
of the layer. If the position of the tension surface is
touched by the shift of the dividing surface, the space
should be sufficiently large to maneuver. The smaller
the radii of surface curvature, the smaller this space,
and eventually it will not be large enough, to say noth-
ing of the fact that representation of a curved surface
layer by a dividing surface with an accuracy of the
radius of curvature (when the thickness of the latter is
on the order of the surface layer) is already meaning-
less. The other problem is related to the nonuniformity
of the curvature. We roay imagine the case of a rather
complex shape of a solid surface or generally that of a
nonequilibrium liquid (under local equilibrium at the
surface), when condition (6.10) is achieved during the
displacement of the coordinate surface only for iis
small areas. In other words, there is a chance that areas
of the tension surface with strongly different curvatures
cannot form a coniinuous surface. Therefore, it should
be assumed that equation (6.10) is a local condition,

In the presence of a field, the values of py and p!:[

for the bulk phases become variables per se, and in gen-
eral it is impossible even to estimaie the signs of the
integrals in (4.7). This means that in the general theory
we should rely on the fact that the transverse surface
tension is not equal to zero and take this into account in
all the relationships. Among these relationships, the
rain equation is the Laplace equation, which (as is
known) does not include the transverse surface tension
even taking into account the gravitational field (the
Gibbs formula). It is natural that the question arises
whether this results from the simple neglect of this ten-
sion, which is based on the hypothesis (which, as we
saw, is not always true) of a two-dimensional pattern of
the tensor of excess surface stresses.

To answer this question, lef us turn now to the con-
ditions of equilibrium at the suiface. Let us write down
each of the equalities (3.2), first for the surface layer
and then for the bulk phase, and obtain the difference of
these expressions; further, we inlegrate this difference,
respectively, for ¢ phase over the volume V™ and for
phase over the volume VA Then, using definitions
(4.5)--¢4.7), let us pass to the excess surface values. Let
us consider first the conditions of equilibrium along the
surface. In general, rather cumbersome expressions are
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obtained; therefore, we report the results only for the
slightly curved surface, when [in view of the small
thickness of the surface layer and the condition (2.5)] it
may be assumed that i, = hiy (i = 1, 2). Then, after per-
forming the mampulat:ons mentioned above from the
first two equations of (3.2} we obtain:

aW/I a]n ’120 a]nh30 _F
h]oaul * (yl B %)hmau, * (’Yl B N)hm&fzﬁf! B f“
oy dlnh dink 7.1)
2 10 . W 7
h—zoauz * (72 B ryl )/12[]8M2 + LYE_ 'YN)h'ZUaHQ - .f2’

where f; are the components of excess surface force
created by the external field.

The detailed conditions of equilibrium (7.1) are
determined by the shape of the dividing surface, which
may be set, for example, by the function z = z(x, ¥).

X

z(x, y)

The cheoice of Cartesian coordinates at the point on the
curved surface,

Let us take a certain point as the origin of the Carte-
sian coordinates, the tangent plane as the coordinate
plane (x, y) (with the axes x and y in the main direc-
tions), and the external normal as the z-axis (figure).
Let us expand function z = z(x, y) in powers of x and y
in the vicinity of the chosen pomt
(1.2)

= ketelopyts
z =508 5000 4,

2
where ¢, and ¢, are the principal curvatures of the divid-
ing surface (the zeroth and first terms of the expansion
are absent because at the point considered, z = 0 and
dzfox = dz/dy = 0, Fig. 1). According to (2.1) and (7.2),
in these local coordinates we have

o= = 1-%—(?21‘2-%-...,
i g1 } i (7.3)
,13 = g33 = I.

Confining ourselves to the main ferm of the expansion
and substituting (7,3 into (7.1), we obtain the coadi-
tions of transverse mechanical equilibrium for the
shightly curved surface

Y,/ du; = fi, Oy /hadu, = fa, (7.4)

where the fact that dy,/h,du; = dy,/ox and JV,/h,0u, =
dY,/0y is taken into account. Conditions (7.4) indicate
that the variation along the coordinate line is caused
only by the variation in the external ficld and is equal to
zero in the absence of a field. In the specific case of a

2 2.2
hl = 8n = 1+C2y + ..
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gravitational field (f; = Tgoh/hdu, where h is the
height), equation (7.4) acquires the following form:
dy/dh = dy,/dh = Tg. (7.5

The corresponding equation for the isotropic surface
was obtained by Gibbs [1].

Let us consider now the condition of transverse
equilibrium at the surface. Once the aforementioned
pressure differences are obtained, the integraiion of the
third equation of (3.2) yields

fy = ltag Ny = ug
| Adpu=po+ [ Adipy-pl
I =u‘;1 My =iy
Uy =ty
[ on=pDadingnm,) +
l(3 = fll;
HJ = l.fg
[ ton-PRoadnGhy)
My =l
lfm
| olnly,
- J(Pri P’I‘])h B aAhad”s
f{?
ln/
nh
I(P’n pTl) Iydu, ]Ah sty
Ty
"3[7
Hyo
dinh,
- J(PTz Prz)h a Ah3duq
uy
uq
dlnh
J(PTz PTz) ZAhadufﬁ
Wi
Ha ug

j(fs fa)"”hd”) j(f% fs)Ahadua (7.6)

uy H#3p

Two integrals appear after the integration by parts of
the two first summands in (7.6), which are mutually
removed with the third and forth summands in (7.6),
provided that (2.5) is taken into account. Equation (2.5)
is used in the remaining sammands of the left-hand side
of (7.6). Then, dividing this expression by A; and

denoting the left-hand side of (7.6) by f5, we arrive at
the relationship
COLLOID JQURNAL Vol 61

No. 4 1999
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P;{“m) - Pg(lfzo)
1 H30
= A_O J(‘t’#l — pr)ciAhadu,

B
o

+ f (PE‘I — P Ahadu,

Hyg

1t «
+1To j(PTz—PTz)CzAh:sdua

@
1t

(7.7}

W

- I (sz — pra)CyAhydiy |+ fa.
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Comparing the expressions in square brackets with
definitions (4.4) and (4.5), we note that only the curva-
- tures ¢, and ¢,, which in the integrands denote the func-
tions of coordinate uy, interfere with the passage to vy,
and v,. However, these values may be taken out of the
integral using the averaging theorem. The latter does
not require the continuity of integrand functions (here,
the pressure difference breaks at 15 = ), but needs to
have definite signs of pressure difference, which is,
strictly speaking, fulfilled only for zeroth or negative
pressures in the bulk phases. However, ynder normal
conditions, the atmospheric pressure is low as com-
pared to tangential pressures in the surface layer:
hence, zero pressure in the bulk phase is a good approx-
imation. Thus, we may represent (7.7} as

Pgr(ffézm}“!?g(l‘an) = Y1y +’Yz:72+fs, (7.8)

where ¢, and ¢, are some average curvatures. Because
¢ (u3) and ¢,(u4) are continuous functions, then, accord-
ing to the same averaging theorem, ¢, and ¢, may be

interpreted as the values of curvature of some particular
coordinate surfaces inside the surface layer. However,
the point is that, in general, these suifaces do not coin-
cide with the dividing surface to which the other sur-
faces represented in (7.8) are referred to. Only for a
slightly carved suiface layer, when the differences in
the positions of these surfaces become insignificant,
does formula (7.8) acquire the form of the Laplace
equation, provided that the external field is preseut:

PR PN = Vi€ +Tacs + f. (7.9)
In the particular case of the gravitational field, (7.9)
is transformed into

Pr = PR = Y100+ Y00, + Tgeosd, (7.10)
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where cos = dh/h;du;, and @ is the angle between the
normal to the surface and the vertical. A similar for-
mula was derived by Gibbs tor the isotropic case [in
view of the smallness of the curvature in formula
(7.10), we actnally may assume that v, = v,]. The rela-
tionship (5.13) discussed above is the specific case of
{7:10) {and the Gibbs formula) for the plane surface.

As was demonstrated above, the conditions of trans-
verse mechanical equilibrium (7.1) are fonmulated
involving the iransverse surface tension. Taking advan-
tage of (4.10), we may represent the condition of trans-
verse mechanical equilibrium (7.8) in terms of trans-
verse surface tension, alihough it is not required at all.
We have found that the absence of transverse surface
tension under the condition of transverse mechanical
equilibrium and in the Laplace equation for an arbitrary
position of the dividing surface depends on the form of
representation and is possible when the nonzero trans-
verse surface tension is strictly taken into account,

8. MECHANICAL EQUILIBRIUM AT THE LINE

Hence, we have established that, at least in the
absence of an external field and for a slightly curved
surface, we may come to the situation where the forces
of the surface tension are ditecied along the surface by
choosing the dividing surface as the tension surface. Is
this sitvation possible for a line? If the dividing surfaces
of various surface phases roeet at ihe saine line, the ten-

sor of excess linear stresses £ inay be determined in
full analogy with the tensor of excess surface stresses in

{4.3) as

= (1/L)ZJ‘Af€jdAj , .1
i

where F; is the tensor of excess surface stresses for the

jih surface and AE; is the difference between its local
value near the line and the value extrapolated from the
depth of the surface phase; the integration is carried ont
over the narrow region between the coordinaie lines,
which ends with the part of line with length L. In this
case, the angle between the coordinate line at each sur-
face and the contact line may be arbitrary; this implies

that the structure of tensor £ should be considered in
the most general form (the presence or the absence of
the transverse surface tension is already of no signifi-
cance).

Tensor £ may be characterized by two vectors,
namely, by the vector of force (tension) y" applied to
the unit length of a line and by the vector of linzar ten-
sion T (using this notation, we distinguish between the
force linear tension and thermodynamic linear tension )
acting on the cross-section of a line. Vector y“ may be
called the transverse tension of a line (Kralchevsky and
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Ivanov [ 18] were the first to introduce this term for the
transition zone of a free film), The transverse tension of
a line has the dimension of surface tension and in gen-
eral is not always directed along the normal to the con-
tact line. In accordance with (8.1), this tension is added
from the similar values for each of the surfaces:

7= 3
i

L. . .
where 7] is the excess force acting per unit length of

the coniact line from the jth surface. The transverse ten-
sion of a line is clearly demonstrated by the stresses in
a solid along the three-phase contact line during wet-
ting: when the excess values as compared to ihe bulk
phase of a solid are introduced into consideration, this
tension is transformed into the tensor of excess surface
stresses, and after subsequent introduction of excess
values with respect to the surface phases this tension is
transformed into the tensor of excess linear stresses as
the transverse tension. Can we avoid the transverse ten-
sion of a line by the choice of the position of the contact
line? Unfortunately, there is no room to maneuver,
because the line considered is the line where the divid-
ing surfaces meet and its position is determined by the
positions of these surfaces. If, in addition, we would
like to avoid the transverse surface tension and choose
the positions of the dividing surfaces as those of tension
surfaces, the position of contact line is strictly fixed.
Therefore, the absence of transverse tension of a line
may result only from the simaplicity of the physical state
of the system (as. for example, in the case of straight
line in a fluid system).

(8.2)

Something similar may be stated about the linear
tension. OUbviously, it can be directed along the contact
line only in the case when the contact line itself is the
coordinate line for all the surfaces simultaneously.
Such a situation is simply tmprobable for nonuniformly
curved surfaces with an independently formed relief
and meirics. However, this situation is possible in a sys-
tem with isotropic bulk and surface phases (without any
definite directions) when the metrics of the entire
region of mulitiphase contact is determined only by the
direction of the contact line. If we are dealing with non-
spherical surfaces, the main condition of their isotropic
properties is, naturally, small curvature,

Let us determine the force of linear tension acting
on the unit length di of the contact line. If the force ©
acts on one end of this unit length, the force
T + (de/dL)dL is applied to the other end (the difference
in signs reflects the opposite directions of these forces)
so that the total force is equal to (d2/dL)dL. In the gen-
eral case, vector T may always be expanded into three
components:

(8.3)

where ¢, n, and b are the unit vectors of the tangent, the
principal normal, and the binormal of the contact line.

T=14+ 7,0+ 1b,

RUSANGV, SHCHEKIN

Their dependences on the line length is given by the
Serret-Frenet equation from differential geometry:

dtfdl.=cn, dn/dL=-ct+7Th, db/dl.=-Tn, (8.4)
where ¢ and T are the curvature and the torque of the
curve, respectively. Using (8.3) and (8.4), we obtain

dt/dL = (dt/dL—1,0)t
+(drfdl +tc—1,Tim + (dt,/dL + 1, T)b,

which is a relation additional to (8.3).

Taking into accouni the external field, the total bal-
ance of the forces acting on the unit line element is
written as some vector equality

(8.5)

Syt +deldL+f = 0, (8.6)

1

where ¥, are the vectors of surface tension in the surface
phases extrapolated to the line, and fis the force exerted
by the external field on the unit length of contact line.
The substitution of (8.5) into (8.6) yields

Z'yj + 'yL +(dtdl — T, c)t
i (8.7

+(dt dl+tc~1,Tn + (d1,/dL +1,T)b+f = (.

Equality (8.7) represents precisely the condition of
mechanical equilibrium at the contact line in the exter-
nal field. This equation is simplified considerably if the
surfaces are isotropic, so that the surface {ensions are
directed along the normal and the linear tension is
directed along the line (=1, 1, =1, = 0):

S+ v+ (dr/dL)t + ten+f = O. (8.8)

/

Taking scalar products of both sides of eguation (8.8)
by the unit vector t, we find

dr/dl = - - t. (8.9)

In the specific case of the gravitational ﬁéid, we
have

where A is the mass excess per unit length of the contact
line and g is the vector of the strength of the gravitational
field; equation (8.9) then acquires the following form:

dt/dl = Agcost, (8.11)

where ¢ is the angle of the siope to the vertical. Because
dh = dLcosd, where h is the height, condition (8.11)
may be writien in yet simpler form as

di/dh = Ag. (8.12)

Let us indicate the most important truncated forms
of the equilibrium condition (8.8). In the absence of a
field, dt/dL = 0, and (8.8) is reduced to condition {11}
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zyj+1{L+1:cn = 0.

il

(8.13)

If the line is free (a filament in an open space), we have
¥;=0and ¥~ = 0, so that (8.8) is transformed into rela-
tionship

(dv/didt+tem+ § = O, (8.14)

This case has been analyzed for the gravitational
field [19].

9. CONCLUSION

In the presence of external fields, the tensors of
excess surface and linear stresses are three-dimensional
parameters, and, in general, their dimnensions cannot be
lowered by the choice of the positions of the dividing
surfaces and lines. At the same time, the condition of
transverse mechanical equilibrium for the curved sur-
faces and, in particular, the Laplace equation, may be
formulated without the use of the transverse surface
tension, as has been done heretofore.

In the absence of external fields, the dividing surface
may always be found in a slightly curved surface layer
that satisfies the zeroth value of the transverse surface
tension. In the spherical case, this dividing surface
coincides with the tension surface. The tension surface
is determined by this criterion in a simpler manner than
by the procedures applied earlier. The conditions of
mechanical equilibrium at the contact line and in the
absence of external fields include the transverse tension
of a line and the normal components of linear tension.
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