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INTRODUCTION

The construction of the kinetic theory of micelliza-
tion in surfactant solutions requires the knowledge of
the thermodynamics of the work of formation of surfac-
tant molecular aggregate (the aggregation work). In a
practically important situation when the surfactant con-
centration exceeds the critical micellization concentra-
tion (CMC), albeit is lower than the concentration at
which macroscopic phase of a surfactant arises, this
work, as a function of the aggregation number, is char-
acterized [1] by both the potential barrier and the poten-
tial well located to the right-hand side of this barrier at
the aggregation number axis. After the well, the work
increases infinitely.

The existence of the potential barrier and well on the
dependence between the aggregation work and the
aggregation number makes the kinetic theory of micel-
lization more complicated than the kinetic theory of
nucleation that is based on the fact that the work of the
formation of a nucleus of arising phase is characterized
(as a function of the number of its molecules) only by a
potential barrier, after which it monotonically falls.

The following circumstances seriously complicate
the kinetic theory of micellization. As in the kinetic the-
ory of nucleation, the flux of molecular aggregates
overcoming (by fluctuations) the potential barrier of the
work of their formation from its left-hand side is also of
importance in the theory of micellization. However,
since in a micellar solution, the potential well follows
the potential barrier rather than the monotonic fall of
the aggregation work, the flux of molecular aggregates
overcoming (by fluctuations) the potential barrier of the
work of their formation from the side of the potential
well is also of importance.

The determination of direct and reverse fluxes of
molecular aggregates over the activation barrier of

micellization created by the potential barrier of the
aggregation work is the main goal of this paper.

We consider the case of a colloidal nonionic surfac-
tant. It is assumed that a micellar solution is the ideal
mixture of a surfactant molecular aggregates of various
sizes in a solvent. In other words, the interactions
between molecular aggregates are not taken into
account, whereas interactions of aggregates with sol-
vent molecules are strictly taken into account via the
aggregation work. This assumption is usually well sat-
isfied in experiments.

1. THERMODYNAMIC CHARACTERISTICS 
OF THE MICELLIZATION KINETICS

The aggregation number (the number of surfactant
molecules in an aggregate) is denoted by 

 

n

 

. The work
of the aggregate formation in a solution containing
originally only surfactant monomers is expressed in
thermal units 

 

kT

 

, where 

 

k

 

 is Boltzmann’s constant, and

 

T

 

 is the solution temperature, is denoted by 

 

W

 

n

 

. The
concentration of molecular aggregates with the aggrega-
tion number 

 

n

 

 we denote by 

 

c

 

n

 

. At 

 

n

 

 = 1, the aggregates
represent surfactant monomers, which in the case under
consideration are all identical. Correspondingly, 

 

c

 

1

 

 

 

≡

 

c

 

n

 

|

 

n

 

 

 

= 1

 

 is the concentration of such monomers. At 

 

n

 

 

 

@ 

 

1

 

,
the value 

 

n

 

 is assumed to be continuous. Then, concen-
tration 

 

c

 

n

 

 implies that 

 

c

 

n

 

dn

 

 determines the total concen-
tration of aggregates for which 

 

n

 

 varies within an infi-
nitely narrow range (

 

n

 

, 

 

n

 

 + 

 

dn

 

).

The aggregation work 

 

W

 

n

 

 is set by the monomer
concentration 

 

c

 

1

 

 by means of term 

 

–(

 

n

 

 – 1)

 

ln

 

c

 

1

 

 [2]. The
behavior of work 

 

W

 

n

 

 as a function of 

 

n

 

 at variable con-
centration 

 

c

 

1

 

 is shown in the figure. Curve 

 

1

 

 corre-
sponds to the case when the surfactant concentration is
below the CMC. Curve 

 

2

 

 corresponds to the case when
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the surfactant concentration is near the CMC. Curve 

 

3

 

corresponds to practically important case when the sur-
factant concentration exceeds the CMC, but is lower
than the concentration that gives rise to the formation of
the macroscopic surfactant phase. It is this curve that
will be used in our further analysis. Positions of maxi-
mum and minimum work at the 

 

n

 

-axis, i.e., the aggre-
gation numbers of critical and stable molecular aggre-
gates, are denoted by 

 

n

 

c

 

 and 

 

n

 

s

 

, respectively; maximum
and minimum per se, i.e., the barrier height and the well
depth of this work, are denoted by 

 

W

 

c

 

 

 

≡ 

 

 

 

and

 

W

 

s

 

 

 

≡ 

 

, respectively. The potential barrier gives

rise to the activation barrier of micellization. The half-
widths of the potential barrier and potential well of the
aggregation work are denoted by 

 

∆

 

n

 

c

 

 and 

 

∆

 

n

 

s

 

, respec-
tively. They are determined by equalities

 

(1.1)

 

Physical meaning of the 

 

∆

 

n

 

c

 

 and 

 

∆

 

n

 

s

 

 half-widths intro-
duced by (1.1) will be disclosed below. The figure takes
into account the equality 

 

W

 

n

 

|

 

n

 

 

 

= 1

 

 = 0. It implies that the
formation of surfactant monomers presenting origi-
nally in a micellar solution does not require any work
[2]. For definiteness, curve 

 

3

 

 in the figure refers to the
case when 

 

W

 

s

 

 > 0 (when concentration 

 

c

 

1

 

 is not too
high).

Values 

 

n

 

c

 

, 

 

n

 

s

 

, 

 

W

 

c

 

, 

 

W

 

s

 

, 

 

∆

 

n

 

c

 

, and 

 

∆

 

n

 

s

 

 (as well as the
work 

 

W

 

n

 

 itself) depend on surfactant monomer concen-
tration 

 

c

 

1

 

. All these values are needed in the kinetic the-
ory of micellization as functions of 

 

c

 

1

 

. They themselves
represent thermodynamic characteristics of the micelli-
zation kinetics.

Further, we consider conditions

 

(1.2)

(1.3)

 

to be fulfilled.
The first conditions in (1.2) and (1.3) allow us to

consider value 

 

n

 

 to be continuous magnitude in the
regions of potential barrier and potential well of work

 

W

 

n

 

, which are the most important for micellization
kinetics. The rest of conditions (1.2) and (1.3) imply
that potential barrier and potential well of work 

 

W

 

n

 

 are
fully exhibited. As it is qualitatively shown in the fig-
ure, they are separated from the initial point 

 

n

 

 = 1at the

 

n

 

-axis and from each other. This circumstance is
expressed by inequalities

 

(1.4)

 

which resulted from conditions (1.2) and (1.3).
Conditions (1.2) and (1.3) are fulfilled when a sur-

factant concentration sufficiently (in practice, negligi-

Wn n nc=

Wn n ns=

∆nc 2/ ∂2Wn/ n2∂ n nc=[ ]1/2
,=

∆ns 2/ ∂2Wn/ n2∂( )
n ns=

[ ]1/2
.=

∆nc @ 1, ∆nc/nc ! 1, ∆nc/ ns nc–( ) ! 1,

∆ns @ 1, ∆ns/ ns nc–( ) ! 1

Wc( ) @ 1,     W c ( ) @ W s ( ) ,expexpexp and  

bly) exceeds the CMC [possibly, the second condition
in (1.2) is valid as a limit]. In particular, conditions
(1.2) and (1.3) imply that the aggregation numbers 

 

n

 

c

 

and 

 

n

 

s

 

 are much larger than unity.
Conditions (1.2) and (1.3) make it possible, together

with definitions (1.1), to derive for work 

 

W

 

n

 

 in the
regions of its potential barrier and well the following
quadratic approximations:

 

(1.5)

(1.6)

 

According to (1.5), work 

 

W

 

n

 

 decreases by a thermal
unit when variable 

 

n

 

 deviates from value 

 

n

 

c

 

 by 

 

∆

 

n

 

c

 

.
However, in accordance with (1.6), work 

 

W

 

n

 

 increases
by a thermal unit when variable 

 

n

 

 deviates from 

 

n

 

s

 

 by

 

∆

 

n

 

s

 

. These facts disclose the physical meaning of intro-
duced values 

 

∆

 

n

 

c

 

 and 

 

∆

 

n

 

s

 

.
Conditions (1.2) and (1.3) and inequality (1.4)

resulted from these conditions allow us to use a macro-
scopic description of the micellization kinetics. They
generalize the conditions of the macroscopic descrip-
tion revealed previously [3] in the kinetic theory of
nucleation.

Regions 

 

n

 

 

 

&

 

 

 

n

 

c

 

 – 

 

∆

 

n

 

c

 

, 

 

n

 

c

 

 – 

 

∆

 

n

 

c

 

 

 

&

 

 

 

n

 

 

 

&

 

 

 

n

 

c

 

 + 

 

∆

 

n

 

c

 

, and

 

n

 

 

 

*

 

 

 

n

 

c

 

 + 

 

∆

 

n

 

c

 

 are called precritical, near-critical, and
supercritical regions, respectively. Micelles are accu-
mulated mainly in the region 

 

n

 

s

 

 – 

 

∆

 

n

 

s

 

 

 

&

 

 

 

n

 

 

 

&

 

 

 

n

 

s

 

 + 

 

∆

 

n

 

s

 

.
This region is called micellar. It is located inside the
supercritical region. Values 

 

n

 

s

 

 and 

 

∆

 

n

 

s

 

 have the mean-
ing of the average aggregation number of micelles and
the scatter of the aggregation number of micelles
around this average value, respectively. As for the
regions of potential barrier and potential well of work

 

W

 

n

 

, we imply (and will imply hereafter) that these
regions are near-critical and micellar regions, respec-
tively.

Wn Wc

n nc–
∆nc

------------- 
 

2

nc ∆nc & n & nc ∆nc+–( ),–=

Wn W s

n ns–
∆ns

------------- 
 

2

ns ∆ns & n & ns ∆ns+–( ).+=

1

2

3

Wn

Wc

Ws

0
1 nc ns n

∆ns∆ns
∆nc∆nc

Behavior of work Wn of the formation of surfactant molec-
ular aggregate as a function of the aggregation number n at
the variation of concentration c1 of surfactant monomers.
See text for explanation.
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2. QUASI-EQUILIBRIUM CONCENTRATIONS 
OF MOLECULAR AGGREGATES

IN PRECRITICAL AND SUPERCRITICAL 
REGIONS OF THEIR SIZES

The majority of the number of surfactant molecular
aggregates are naturally located in the regions of their
sizes, where the work of aggregate formation is mini-
mal. These regions are located to the left- and right-
hand sides of the potential barrier of work, i.e., they are
precritical and supercritical regions. We are not con-
cerned about the part of supercritical region where n *
ns + ∆ns, because the concentration of molecular aggre-
gates in this region is rather low.

The large supply of molecular aggregates in precrit-
ical and supercritical regions may be assumed to be var-
ied by its relative value so slowly that the aggregate
concentration in each of these separate regions is main-
tained as quasi-equilibrium irrespective of permanent
decrease or increase in the number of aggregates by
their fluxes over the potential barrier of the work of the
aggregate formation. However, the mutual quasi-equi-
librium between molecular aggregates in precritical
and supercritical regions is absent due to these fluxes.
Mutual quasi-equilibrium is only reached as the final
equilibrium of micellar solution is established when
quasi-equilibrium concentrations of molecular aggre-
gates in precritical and supercritical regions, as well as
the concentration of molecular aggregates within the
entire range of their sizes come to complete equilib-
rium.

Physical assumptions of quasi-equilibrium state of
molecular aggregates in precritical and supercritical
regions, which we substantiated in this work, essentially
simplify the subsequent discussion. Let us put aside the
strict confirmation of this assumption until the hierarchy
of the scales of characteristic kinetic times of micelliza-
tion will be disclosed in our subsequent publications.

Denoting the quasi-equilibrium concentration of

molecular aggregates by  we, hence, have in precrit-
ical and supercritical regions

(2.1)

(2.2)

In accordance with Boltzmann’s fluctuation principle

(2.3)

We have in precritical and supercritical regions:

(2.4)

(2.5)

where cs ≡  is the concentration of molecular

aggregates at the point of minimal work of their forma-
tion. The fact that pre-exponential factor in (2.4) is equal

cn
e( )

cn cn
e( ) n & nc ∆nc–( ),=

cn cn
e( ) n * nc ∆nc+( ).=

cn
e( ) const Wn–( ).exp=

cn
e( ) c1 Wn–( ) n & nc ∆nc–( ),exp=

cn
e( ) cs Wn W s–( )–[ ] n * nc ∆nc+( ),exp=

cn n ns=

to c1 results from c1 ≡ cn|n = 1 and equality Wn|n = 1 = 0
already mentioned in Section 1. The fact that pre-expo-
nential factor in (2.5) is equal to cs results from the just
made definition of concentration cs and evident equality

 = 0. Note that (2.4) coincides with for-

mula (1.10) derived thermodynamically [2] for the
equilibrium aggregate concentration.

Because micelles are accumulated in a micellar
region, for their total concentration cM we have

(2.6)

Using formulas (2.2) and (2.5) in (2.6) (micellar region
is located inside the supercritical region), allowing for
quadratic approximation (1.6), substituting with a high
degree of accuracy the integration limits by –∞ and ∞,
and calculating integral, we arrive at

(2.7)

Using (2.7), we express (2.5) as

(2.8)

3. KINETIC EQUATION OF THE FORMATION
OF MOLECULAR AGGREGATES

IN NEAR-CRITICAL AND MICELLAR REGIONS 
OF THEIR SIZES

Evolution of concentration cn of molecular aggre-
gates with n ≥ 2 in time t is determined by the kinetic
equation

(3.1)

[equation (2.3) in [2]]. Here, Jn is the flux of molecular
aggregates in the space of aggregation numbers. It is
given by relation

(3.2)

[equation (2.7) in [2]]. Value  > 0 is the number of
surfactant monomers absorbing from the solution per
unit time by a molecular aggregate composed of n mol-
ecules.

According to the first conditions of (1.2) and (1.3),
the aggregation number n may be considered to be con-
tinuously variable in near-critical and micellar regions
of the sizes of molecular aggregates. In these regions,
equation (3.1) may, hence, be written as the equation of
continuity

(3.3)

Wn W s–( )
n ns=

cM cn n.d

ns ∆ns–

ns ∆ns+

∫=

cM π1/2cs∆ns.=

cn
e( ) cM/π1/2∆ns( ) Wn W s–( )–[ ]exp=

n * nc ∆nc+( ).

cn/ t∂∂ Jn 1– Jn n 2 3,…,=( )–=

Jn jn
+ cn cn 1+ Wn 1+ Wn–( )exp–[ ]=

n 1 2,…,=( )

jn
+

cn t( )/ t∂∂ Jn t( )/ n,∂∂–=
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where we denoted the dependence of values cn and Jn
on time by argument t.

Taking into account that Wn + 1 – Wn = ∂Wn/∂n, from
(1.5) and (1.6) we obtain

(3.4)

(3.5)

As is shown by the first conditions of (1.2) and (1.3),
the values in the right-hand sides of (3.4) and (3.5) are
much smaller (by the absolute value) than unity in near-
critical and micellar regions of aggregate sizes. Then,
from (3.4) and (3.5), with a high degree of accuracy, we
have in these regions

(3.6)

(3.7)

Let us take into account the differential relation

(3.8)

which is true when variable n is continuous.
From (3.2) and (3.6)–(3.8), ignoring the products of

small values ∂cn/∂n, 2(n – nc)/(∆nc)2, and 2(n – ns)/(∆ns)2,
we obtain

(3.9)

(3.10)

where  ≡  and  ≡  are the intensities

of monomer absorption by critical and stable aggre-
gates, respectively.

Relations (3.9) and (3.10), together with the equa-
tion of continuity (3.3), result in the kinetic equation of
the formation of molecular aggregates in near-critical
and micellar regions of their sizes.

Let us demonstrate another way of deriving rela-
tions (3.9) and (3.10). We denote the variation rate of
the aggregation number  of the molecular aggregate

Wn 1+ Wn–
2 n nc–( )

∆nc( )2
----------------------–=

nc ∆nc & n & nc ∆nc+–( ),

Wn 1+ Wn–
2 n ns–( )

∆ns( )2
---------------------=

ns ∆ns & n & ns ∆ns+–( ).

Wn 1+ Wn–( )exp 1
2 n nc–( )

∆nc( )2
----------------------–=

nc ∆nc & n & nc ∆nc+–( ),

Wn 1+ Wn–( )exp 1
2 n ns–( )

∆ns( )2
---------------------+=

ns ∆ns & n & ns ∆ns+–( ).

cn 1+ cn cn/ n∂∂+=

Jn t( ) jc
+ 2 n nc–( )/ ∆nc( )2 ∂/ n∂–[ ]cn t( )=

nc ∆nc & n & nc ∆nc+–( ),

Jn t( ) js
+ 2 n ns–( )/ ∆ns( )2 ∂/ n∂+[ ]cn t( )–=

ns ∆ns & n & ns ∆ns+–( ),

jc
+ jn

+

n nc=
js

+ jn
+

n ns=

ṅ

in time (derivative of n over time) by n. Evidently, the
equality

(3.11)

is valid, where  > 0 is the number of surfactant mono-
mers emitted into a solution per unit time by molecular
aggregate composed of n molecules. According to rela-
tion (2.6) in [2], we have

(3.12)

hence, assuming variable n to be continuous, we have
approximately 

(3.13)

As was already mentioned during the derivation of
formulas (3.6) and (3.7), the power of exponent
exp(∂Wn/∂n) is small in near-critical and micellar
regions of aggregate sizes. Then, from (3.11) and (3.13)
with a high degree of accuracy we have in these regions

(3.14)

Let us represent the flux of molecular aggregates
Jn(t) as

(3.15)

Term with  describes the regular evolution of a single
molecular aggregate. The term with differentiation
operator ∂/∂n describes the fluctuation evolution of the
ensemble of molecular aggregates. This evolution
smears the regular evolution. The unknown coefficient
β at term with operator ∂/∂n we determine a little bit
later.

In the near-critical and micellar regions, we substi-
tute (3.14) into (3.15). Determining the then unknown
coefficient β from the condition of vanishing of the flux
of molecular aggregates at their equilibrium concentra-
tion given by expression (2.3), we obtain

(3.16)

Opening derivative ∂Wn/∂n in (3.16) in near-critical
and micellar regions by means of (1.5) and (1.6), we
arrive at previous relations (3.9) and (3.10).

In addition, let us make a number of important state-
ments.

Let us denote the chemical potential of surfactant
molecules in a molecular aggregate with the aggrega-
tion number n by µ1n, and the chemical potential of sur-
factant monomers in micellar solution, by µ1. Under the
thermal and mechanical equilibrium of a molecular
aggregate with a micellar solution [4], the relation

(3.17)

is valid.

ṅ jn
+ jn

––=

jn
–

jn 1+
– jn

+ Wn 1+ Wn–( ),exp=

jn
– jn

+ Wn/ n∂∂( ).exp=

ṅ jn
+ Wn/ n.∂∂–=

Jn t( ) ṅ β∂/ n∂+( )cn t( ).=

ṅ

Jn t( ) jn
+– Wn/ n ∂/ n∂+∂∂( )cn t( ).=

kT Wn/ n∂∂ µ1n µ1–=
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It is evident that µ1n coincides with the chemical
potential of surfactant monomers in the imaginary
micellar solution, which is under the material equilib-
rium with molecular aggregate having aggregation
number n at the same temperature and pressure as the
considered micellar solution. Denoting the concentra-
tion of surfactant monomers in such an imaginary
micellar solution by c1n and assuming imaginary and
considered solutions to be the ideal mixture of aggre-
gates in a solvent, we have by the known formula of the
theory of ideal solutions:

, (3.18)

where c1 is the concentration of surfactant monomers in
the considered micellar solution.

Using (3.17) and (3.18) in (3.13), we obtain

(3.19)

Substituting (3.19) into (3.13), we have

(3.20)

Note that formulas (3.19) and (3.20) are not connected
to whether the molecular aggregate is located in near-
critical or micellar regions or not.

Usually, the known values are not  and , sepa-
rately, but value  comprising, according to (3.11), the
total flux of monomers absorbing or emitting by the
aggregate. Moreover, formula (3.20) allows us to easily
determine direct flux , which in (3.16) plays the role
of the diffusion coefficient of molecular aggregates in
the space of aggregation numbers by the total flux .

Total flux  is proportional to the (c1 – c1n) differ-
ence, hence, acting as the driving force for the variation
of the size of a single molecular aggregate. It is seen
from (3.20) that  is always larger than zero, even at
c1 = c1n, when the total flux  vanishes. Simulta-

neously, according to (3.19), inequality  > 0 be also
always fulfilled. Naturally, these conclusions should be
expected.

The intensities of absorption of surfactant mono-
mers  and  by critical and stable molecular aggre-
gates are to be important in the kinetic theory of micel-
lization. As the thermodynamic characteristics of
micellization mentioned in Section 1, in the forthcom-
ing consideration values  and  are assumed to be
the known functions of monomer concentration c1.

µ1n µ1– kT c1n/c1( )ln=

jn
– jn

+c1n/c1.=

ṅ jn
+ 1 c1n/c1–( ).=

jn
+ jn

–

ṅ

jn
+

ṅ

ṅ

jn
+

ṅ

jn
–

jc
+ js

+

jc
+ js

+

4. DIRECT AND REVERSE OVERCOMING 
OF THE ACTIVATION BARRIER 

OF MICELLIZATION BY MOLECULAR 
AGGREGATES

As was already mentioned above, at micellization,
we observe both the direct flux of molecular aggregates
overcoming (by fluctuation) the activation barrier of
micellization from the side of precritical region and the
reverse flux of molecular aggregates overcoming (by
fluctuation) the activation barrier of micellization from
the side of the supercritical region.

Let us denote direct and reverse fluxes of molecular
aggregates in the region of potential barrier of the work
of their formation, i.e., in the near-critical region, by

(t) and (t), respectively. We denote the concentra-
tions of molecular aggregates participating in these
fluxes in near-critical region by (t) and (t), respec-
tively. In this case, for the total flux Jn(t) of molecular
aggregates and their total concentration cn(t) in the
near-critical region, we have

(4.1)

(4.2)

Considerations underlying the kinetic equation of
micellization derived in Section 3 are also valid sepa-
rately for each of the molecular aggregates transferring
(by fluctuation) from precritical to supercritical regions
and for molecular aggregates transferring (by fluctua-
tion) from supercritical to precritical regions. There-
fore, together with (3.3) and (3.9), we have in near-crit-
ical region

(4.3)

(4.4)

as well as

(4.5)

(4.6)

It is natural that (4.1)–(4.6) be consistent with (3.3)
and (3.9).

Let us formulate the boundary conditions to kinetic
equations. Resting on the ideas of the kinetic theory of
nucleation and taking into account relations (2.1) and
(2.2), we conclude that the boundary conditions to

Jn' Jn''

cn' cn''

Jn t( ) Jn' t( ) Jn'' t( ) nc ∆nc & n & nc ∆nc+–( ),+=

cn t( ) cn' t( ) cn'' t( ) nc ∆nc & n & nc ∆nc+–( ).+=

cn' t( )/ t∂∂ Jn' t( )/ n∂∂–=

nc ∆nc & n & nc ∆nc+–( ),

Jn' t( ) jc
+ 2 n nc–( )/ ∆nc( )2 ∂/ n∂–[ ]cn' t( )=

nc ∆nc & n & nc ∆nc+–( ),

cn'' t( )/ t∂∂ Jn'' t( )/ n∂∂–=

nc ∆nc & n & nc ∆nc+–( ),

Jn'' t( ) jc
+ 2 n nc–( )/ ∆nc( )2 ∂/ n∂–[ ]cn'' t( )=

nc ∆nc & n & nc ∆nc+–( ).
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equations (4.3) and (4.4) for concentration (t) in the
near-critical region are:

(4.7)

and the boundary conditions to equations (4.5) and
(4.6) for concentration (t) in near-critical region are
the following:

(4.8)

Quasi-equilibrium concentration  at the boundary
conditions (4.7) and (4.8) is determined by expressions
(2.4) and (2.8).

According to (4.2), (4.7), and (4.8), the boundary
conditions to equations (3.3) and (3.9) for the total con-
centration cn(t) of molecular aggregates in the near-crit-
ical region are:

(4.9)

where quasi-equilibrium concentration  is still
given by expressions (2.4) and (2.8). Boundary condi-
tions (4.9) seem to be quite natural at the conclusion
made in Section 2 that the concentrations of molecular
aggregates in precritical and supercritical regions are
quasi-equilibrium values.

5. QUASI-STATIONARY FLUXES 
OF MOLECULAR AGGREGATES 

OVER THE ACTIVATION BARRIER
OF MICELLIZATION

At quasi-equilibrium concentrations of molecular
aggregates in precritical and supercritical regions, the
concentration of molecular aggregates in the near criti-
cal region will be quasi-stationary. This statement will
be rigorously confirmed after the disclosure of the hier-
archy of the scales of characteristic kinetic times of
micellization in our forthcoming publications. The
“quasi” prefix to the words “equilibrium” and “station-
ary” stresses the absence of the time dependence within
the large time intervals, during which concentrations c1
and cM have no time to noticeably vary in the course of
the slow tendency of the micellar solution to its final
state of complete equilibrium.

Let us study the quasi-stationary state of molecular
aggregates in the near-critical region. In this state, con-
centrations (t), (t), and cn(t) of aggregates are
independent of time t, whereas the aggregate fluxes

(t), (t), and Jn(t) are also independent of the
aggregation number n, as it clearly follows from the
equations of continuity (4.3), (4.5), and (3.3). Let us

cn'

cn' t( )/cn
e( ) 1 n nc ∆nc–≅( )

0 n nc ∆nc+≅( ),



≅

cn''

cn'' t( )/cn
e( ) 0 n nc ∆nc–≅( )

1 n nc ∆nc+≅( ).



≅

cn
e( )

cn t( )/cn
e( ) 1 n nc ∆nc+−≅( ),≅

cn
e( )

cn' cn''

Jn' Jn''

denote concentrations (t), (t), and cn(t) in a quasi-

stationary state, by , , and , and fluxes

(t), (t), and Jn(t) in this state by J', J'', and J (for
simplicity of notations, quasi-stationary state of fluxes
is indicated by the absence of index n and argument t).
Then, in the near-critical region we have

(5.1)

(5.2)

(5.3)

as well as

(5.4)

(5.5)

(5.6)

Let us take into account that the right-hand sides of
equations of continuity (4.3) and (4.5) in the quasi-sta-
tionary state of molecular aggregates are equal to zero.
We use expressions (4.4) and (4.6) for the fluxes of
molecular aggregates and the boundary conditions
(4.7) and (4.8) to the concentrations of molecular

aggregates where quasi-equilibrium concentration 
is given by expressions (2.4) and (2.8) and quadratic
approximation (1.5). Then, we obtain in the near-criti-
cal region:

(5.7)

(5.8)

(5.9)

(5.10)

For the total concentration of molecular aggregates and
their total flux in quasi-stationary state in the near-crit-
ical region, according to (4.2) and (4.1), we have

(5.11)

J = J' + J''. (5.12)

cn' cn''

cn'
s( ) cn''

s( ) cn
s( )

Jn' Jn''

cn' t( ) cn'
s( ) nc ∆nc & n & nc ∆nc+–( ),=

cn'' t( ) cn''
s( ) nc ∆nc & n & nc ∆nc+–( ),=

cn t( ) cn
s( ) nc ∆nc & n & nc ∆nc+–( ),=

Jn' t( ) J' nc ∆nc & n & nc ∆nc+–( ),=

Jn'' t( ) J'' nc ∆nc & n & nc ∆nc+–( ),=

Jn t( ) J nc ∆nc & n & nc ∆nc+–( ).=

cn
e( )

cn'
s( ) = 

c1 Wc–( )exp

π1/2∆nc

-----------------------------
n nc–
∆nc

------------- 
 

2

exp

×
n' nc–
∆nc

-------------- 
 

2

–exp n' nc ∆nc & n & nc ∆nc+–( ),d

n

∞

∫

J' c1 jc
+ Wc–( )/π1/2∆nc,exp=

cn''
s( ) cM Wc W s–( )–[ ]exp

π∆nc∆ns
-------------------------------------------------

n nc–
∆nc

------------- 
 

2

exp=

×
n' nc–
∆nc

-------------- 
 

2

–exp n' nc ∆nc & n & nc ∆nc+–( ),d

∞–

n

∫

J'' cM jc
+ Wc W s–( )–[ ] /π∆nc∆ns.exp–=

cn
s( ) cn'

s( ) cn''
s( ) nc ∆nc & n & nc ∆nc+–( ),+=
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Direct J' and reverse J'' fluxes given by formulas
(5.8) and (5.10) are, naturally, positive and negative,
respectively. In accordance with (5.8), direct flux J' the
larger, the higher are values of c1 and  and the lower
are values of Wc and ∆nc. According to (5.10), the larger
the absolute value of the reverse flux J'', the higher cM

and  are and the lower (Wc – Ws), ∆nc, and ∆ns are.
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