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Abstrac t—A kinetic theory of vapor nucleation on insoluble wettable condensation nuclei is constructed. 
Depending on the initial parameters of a theory that determines the properties of a liquid, vapor, substance com­
prising the solid wettable nucleus, and boundary layers and characterizes the sizes of condensation nuclei; their 
initial number in the vapor-gas medium; and the rate of the external creation of a metastable state in vapor, all 
basic kinetic characteristics of nucleation (such as the number of supercritical droplets emerging in nucleation, 
the time of the beginning and the duration of the emergence of supercritical droplets, and the width of the spec­
trum of supercritical droplet sizes) are determined in the analytical form. Characteristic cases of free-molecular 
and diffusion regimes of the growth of supercritical droplets are analyzed. The quantitative criterion indicating 
the nature of the termination of the nucleation of supercritical droplets is disclosed: whether it is caused by the 
absorption of vapor by supercritical droplets or by the depletion of the supply of condensation nuclei due to the 
formation of supercritical droplets on these nuclei. Data of numerical calculation are reported which demon­
strate the ability of the kinetic theory to draw interesting practical predictions within a wide range of the values 
of the initial parameters of the theory. It is shown how the polydispersity of insoluble wettable condensation 
nuclei can be taken into account in the theory. 

I N T R O D U C T I O N 

The aim of this work is to construct the kinetic the­
ory of vapor nucleation on insoluble wettable conden­
sation nuclei with a homogeneous surface under the 
gradual external creation of a metastable state. 

Difficulties in constructing this theory are associ­
ated with the fact that droplets arising from vapor on 
insoluble wettable nuclei represent complex formations 
having two interfaces: internal (between the nucleus 
and the liquid film surrounding this droplet) and exter­
nal (between the liquid film and surrounding vapor). 
Numerous macroscopic characteristics of surface 
forces—surface tension of a droplet at the boundary 
with the vapor, the condensation coefficient of vapor 
molecules, the correlation length in a liquid film 
formed around the nucleus, and the work of nucleus 
wet t ing—are exhibited simultaneously in the nucle­
ation on insoluble wettable nuclei. 

With regard to nucleation, we mean both the over­
coming of the activation barrier by the nuclei resulting 
in the formation of supercritical droplets and the entire 
complex process occurring in the nucleating system 
from the beginning and to the termination of the effec­
tive nucleation of supercritical droplets. All basic 
kinetic characteristics of nucleation, such as the num­
ber of nucleating droplets, the t t ime of the beginning 
and the duration of the droplet nucleation, as well as the 
width of the spectrum of droplet sizes, are displayed in 
this process. 

The process of nucleation is nontrivial for the theo­
retical description and is the most sensitive to the sur­

face forces in the situation where this process is accom­
panied by the overcoming of the noticeable activation 
barrier by the droplets. However, this barrier is not too 
high; otherwise, the process intensity will be negligi­
ble. Due to the extremely sharp dependence of the 
height of the activation barrier on vapor supersaturation 
under the macroscopicity of condensation nuclei, this 
situation can be accomplished only when the metasta­
ble state in vapor is not created instantaneously, i.e., 
prior to the onset of nucleation, but gradually in the 
course of the nucleation process. This situation is inter­
esting and the gradual external creation of the metasta­
ble state in vapor needed to implement such a situation 
will be studied in this work. 

Under the condition of the gradual creation of the 
metastable state, the current values of vapor supersatu­
ration and the concentrations of condensation nuclei 
are not known in advance. The problem of the consis­
tency of vapor absorption and the consumption of con­
densation nuclei by droplets with the velocity of the 
external creation of the metastable state in vapor is 
essentially nonlinear and nonlocal in t ime. The inten­
sity of the creation of new droplets at each current time 
moment depends in a complex nonlinear manner both 
on the velocity of the external creation of the metasta­
ble state in vapor at all the preceding moments and on 
the amount of vapor and condensation nuclei that is 
absorbed or consumed during this t ime by droplets 
already nucleated. 

In principle, this kinetic problem of consistency was 
solved in [1 , 2] , regardless of what the condensation 
nuclei specifically are. However, we failed to obtain in 
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analytical form the final formulas from the results [1 ,2 ] 
due to the complex dependence of the activation energy 
on vapor supersaturation in the general case of arbitrary 
condensat ion nuclei. 

This solution is to be performed in this work using 
the thermodynamics of nucleation on insoluble wetta-
ble condensat ion nuclei developed in [3]. Macroscopic 
sizes of these nuclei allow us to analytically develop the 
kinetic theory of nucleation within a wide range of the 
values of the initial parameters of the theory. 

In this work, we report the results which were not 
represented either in the general kinetic theory of het­
erogeneous nucleation [1 ,2 ] nor in the kinetic theory of 
nucleation on soluble nuclei [ 4 - 7 ] . The results of this 
work are the generalization of the theory for the case of 
the diffusion regime of the growth of supercritical drop­
lets, the analysis of the condit ions of the applicability 
of the theory, the formulation of the equation for the 
derivation of the degree of vapor metastability at which 
half the supercritical droplets emerge during the grad­
ual creation of the metastable state, and the develop­
ment of the effective method of the calculation of the 
kinetic characteristics of nucleation on insoluble wetta-
ble nuclei covering the whole domain of the applicabil­
ity of the theory. 

As in [ 1 - 3 ] , it is assumed that all the condensation 
nuclei are identical. The possibility of accounting for 
the polydispersity of insoluble wettable condensation 
nuclei in the kinetic theory will be demonstrated at the 
end of this work. 

1. I D E A L VAPOR SUPERSATURATION 
A N D ITS R E F E R E N C E VALUE 

Let us introduce the vapor supersaturation C, via the 
relation 

C = ( n / n j - l , (1.1) 
where n and are the number densities of molecules 
of vapor and supersaturated vapor, respectively. Let us 
denote the radius of a droplet formed in the vapor-gas 
medium on one of the condensat ion nucleus presented 
in the med ium by R. To describe the droplet, we use, as 
a variable, the parameter v determined by the equality 

v = 4 i t / ? 3 / 3 v a , (1.2) 

where v a is the molecular volume of condensing liquid. 
In the case of insoluble macroscopic condensation 
nuclei considered in this work, v represents the number 
of liquid molecules which would be in a droplet pro­
vided it does not contain condensat ion nuclei at all. For 
further use of results in [ 1 , 2 ] , it is necessary that, at the 
stage that is of interest to us , the characteristic droplet 
radius markedly exceed the radius of condensation 
nucleus and, hence, that the value of v determined by 
the equality (1.2) almost coincide with the true number 
of vapor molecules condensed by the droplet. The 

validity of this statement will be demonstra ted in Sec­
tion 6. 

The creation of the metastable state in vapor is 
described by the law of growth (in t ime) of the ideal 
supersaturation O defined by the equality 

O = ( n t 0 t / n j - l , (1.3) 

where n , o t is the total number of molecules of a con­
densing substance in a unit volume of the vapor -gas 
med ium also including the molecules condensed by the 
droplet . The ideal supersaturation is only dependent on 
the external condit ions. The development of the nucle­
ation process is governed from outside precisely by set­
ting the growth of the ideal supersaturation in t ime. 

The most important of all the kinetic characteristics 
of the nucleation is the total number of nucleat ing 
supercritical droplets . The value of ideal supersatu­
ration O above which half the total number of droplets 
emerging in the nucleation process is formed serves as 
the reference parameter to find this characteristic. The 

value is not known in advance when the rate of the 

growth of ideal supersaturation <J> is set from the out­
side. 

As in [1 , 2 ] , we use the t ime-dependent power 
approximation 

O = {tltS (1.4) 

to determine <D. This approximation involves two inde­
pendent positive parameters : characteristic t ime t„ and 
the exponent m. In this case, t ime t is counted from the 
moment when, according to approximation (1.4), 
0 = 0. The procedure for the generalization of the 
kinetic theory of nucleation for the case of an arbitrary 
dependence of the ideal vapor supersaturation on t ime 
was shown in [5]. 

According to (1.4), we have for moment corre­

sponding to the following expression: 

U = r . * * ™ . (1.5) 

2. T H E M A I N P A R A M E T E R S 
O F T H E KINETIC T H E O R Y O F N U C L E A T I O N 

The most important parameter in the kinetic theory 
of nucleation [1 , 2] is the dimensionless parameter T 
defined by the equality 

r = - o . O A F / ac ) | ? = * , . (2 . i) 

Here, AF is the activation energy of nucleation set by 
the difference be tween the m a x i m u m and min imum of 
the work of the formation of a droplet on a condensa­
tion nucleus. The A F energy is expressed in kBT units , 
where kB is Bol tzmann ' s constant and Tis the tempera­
ture of droplets and the surrounding vapor -gas med ium 
(the existence of thermal equil ibr ium between droplets 
and the med ium is secured by the suggested high con-
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centration of the passive gas in a med ium compared to 
the vapor concentration). In the situation where the 
nucleation is accompanied by the droplets overcoming 
the noticeable activation barrier, the parameter T is 
rather large: 

T > 1. (2.2) 

Let Rc be the radius of a critical droplet, which is in 
unstable chemical equil ibrium with the vapor. For con­
siderably supercritical droplets (for which R > (3-4) /? c 

is valid), we can always pass from variable v deter­
mined by equality (1.2) to such a variable p that 
increases in t ime at a rate p independent of p (as well 
as of v) but is determined only by the vapor supersatu­
ration irrespective of the regime of the matter 
exchange between the droplets and the vapor. It is such 
a variable convenient for the theory that will be used 
further. Then, we have 

P = HO- (2.3) 

Hereafter, p is defined as the droplet "size." The valid­
ity of inequality R > (3-4)Rc at the stage corresponding 
to the nucleation of supercritical droplets is secured by 
the fulfillment of condition (4.8) indicated in Section 4 . 

The radius Rc of the critical droplet is almost always 
much smaller than the mean free path of vapor mole­
cules and, moreover, much smaller than this path 
divided by the condensation coefficient of vapor mole­
cules. Then, the overcoming of the activation barrier of 
nucleation by the droplets almost always occurs in a 
free-molecular regime of the matter exchange between 
the droplets and the vapor. 

However, once the activation barrier of nucleation is 
overcome by the droplets, their radii can be so large that 
the free molecular regime is gradually changed to the 
diffusion mechanism, which can become even the pre­
vailing regime at the stage corresponding to the nucle­
ation of supercritical droplets. 

Let us first consider the characteristic case where a 
free molecular regime still prevails at the stage corre-. 
sponding to the nucleation of supercritical droplets. It 
is precisely this case that was studied in [1 , 2] . As fol­
lows from (1.2), the variable 

.1/3 
p = V 

provides for the fulfillment of relation (2.3). 

(2.4) 

For the rate of the growth of this variable in a free 
molecular regime, we have 

p = a £ / x . (2.5) 

Here , a is the condensa t ion coefficient of vapor 
molecu les and T is the m e a n free t ime of a molecu le 

in the saturated vapor. It is de te rmined by the equ­
ality 

x = 1 2 / [ ( 3 6 K ) " V f n„vT], (2.6) 

where vT is the mean thermal velocity of vapor mole­
cules (the cross section of the collision of molecules is 

est imated via v j j f ) . 

In addition to parameter T, other important variables 
in the kinetic theory of nucleation [1 ,2 ] are the dimen-
sionless parameters c and h, which, at a free molecular 
growth of supercritical droplets, are determined by the 
equalities 

c = 
mxT 

(m + 1 )/m 

h = 6 TI(-°Q) r l 
^# c 

(2.7) 

(2.8) 

where r)(-°°) denotes the initial concentration of con­
densation nuclei, i.e., their number in a unit volume of 
the vapor -gas med ium at the beginning of the stage 
corresponding to the nucleation of supercritical 
droplets . 

Parameter h is important because it al lows us to 
determine the total number N of supercritical droplets 
nucleating in a unit volume of the vapor-gas med ium 
by the formula 

N = r | ( - o o ) [ i - e x p ( - l / / i ) ] (2.9) 

(formula (28) in [2]). At h > 1 and h < 1, it follows 
from (2.9) that 

and 

N = i\(-°»)/h {h>l), 

N = T|(-°°) (h<l). 

(2.10) 

(2.11) 

According to (2.10), at h > 1, droplets consume 
only a fairly small portion of the entire initial amount 
of condensat ion nuclei (each droplet consumes one 
nucleus). However, according to (2.11), at h < 1, drop­
lets consume the whole initial amount of condensation 
nuclei. Hence , the value of parameter h is the quantita­
tive criterion, which determines whether the termina­
tion of the stage corresponding to the droplet nucle­
ation is caused by the vapor absorption by the droplets 
or by the depletion of the reserve condensation nuclei 
by the droplets formed on nuclei. 

According to inequality (37) in [2], relation 

I C * - * * l / * * < ( l n 2 ) / r {h>\ or h< 1) (2.12) 

is valid. The subscript * characterizes the values of 
parameters at moment . 

The parameter c is important because it allows us to 
calculate the width Ap of the size spectrum of the 
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supercritical droplets at the p-axis by the equation 

Ap = 3/c (h §> 1 or h < 1) (2.13) 

resulted from formulas (45) and (48) in [2] . Only at this 
axis at which, according to (2.3), all the supercritical 
droplets " m o v e " at an identical rate at each current 
value of the vapor supersaturation £ does the spectrum 
of droplet sizes (to be more exact, each part of the spec­
t rum formed by the current t ime moment ) move as a 
whole with no change in its shape. Correspondingly, it 
is only at this axis that we can state the width of the 
droplet size spectrum as a t ime-independent value. 

According to formulas (45), (47), and (49) in [2], 
the approximate equality 

Atlt^^llmT (h > 1 or h < 1) (2.14) 

is valid. Here , At is the duration of the nucleation of 
supercritical droplets. Substi tuting (1.5) and (2.7) into 
(2.14), we have 

At = 3z/a®*c (h>\ or h<\). (2.15) 

Hence , parameter c is also important for determining 
t ime At. 

Moment s tm and foff of the beginning and the termi­
nation of the nucleation of supercritical droplets can be 
found from (1.5) and (2.15) using relations 

ton = t*-Atl2, toif~t* + Atl2, (2.16) 

where it is taken into account that moment lies 

approximately in the middle of the t ime interval of the 
nucleation of supercritical droplets. It follows from (2.2) 
and (2.14) that (at the not so small parameter m) ine­
quality r o n > 0 is true, as is expected. 

Let us consider the opposite characteristic case 
(which was not studied in [1 , 2]), where the diffusion 
regime of matter exchange between the supercritical 
droplets and the vapor prevails at the stage correspond­
ing to the nucleation of supercritical droplets . Then, as 
follows from (1.2), variable 

p = v 2 / 3 (2.17) 

secures the fulfillment of relation (2.3). 

For the rate p of the growth of this variable in the 
diffusion regime, we have 

P = C/TD. (2.18) 

Here , x D is the characteristic t ime defined by the equa­
tion 

TD = ( 3 / 8 7 t ) ( 4 7 i / 3 v a ) 1 / 3 / D n (2.19) 

where D is the diffusion coefficient of vapor molecules 
in the vapor -gas medium. 

General izing the kinetic theory developed in [1 , 2] 
for the case of the diffusion growth of supercritical 
droplets , we can be assured that relations (2.9)-(2.14) 
and (2.16) remain valid. However, dimensionless 

parameters c and h of the theory are defined by the 
equalit ies 

c = 
m x 0 r 

3 7 t 1 / 2 T i ( - ° o ) r I 

4 n„ 4>*c™ 
h = 

(2.20) 

(2.21) 

[the definition (2.1) of parameter T remains the same] . 
Instead of (2.15), we now have 

At~ 7>%DIQ>*c (h > 1 or h <§ 1 ) . (2.22) 

The value of parameter h remains the quantitative crite­
rion of the actual termination of the nucleation of 
supercritical droplets . 

Under the condit ion of the linear dependence of 
parameter h on T|(-°°) followed from equalit ies (2.8) 
and (2.21), the relatively simple and physically obvious 
limiting situations h > 1 or h < 1 are more feasible than 
the situation where h ~ 1. Below, we confine ourselves 
to the limiting situations h > 1 and h< \. 

3 . E Q U A T I O N F O R T H E R E F E R E N C E VALUE 
O F T H E I D E A L VAPOR S U P E R S A T U R A T I O N 

The basic parameters T, c, and h introduced into the 
kinetic theory of nucleation are dependent on the refer­
ence value <I>% of the ideal vapor supersaturation. Cor­
respondingly, kinetic characteristics of nucleation N, 
Ap, At, ton, and toff expressed via with the aid 

of parameters c and h are also dependent on the param­
eter Q>^. 

At a free molecular growth of supercritical droplets , 
we have for the following implicit equat ion: 

(c / fc) ln2 (h>\) 

c\n2 (h<\) 
(3.1) 

(Eq. (36) in [2]) where the value ofyj is determined by 
relation 

= 3-C V c 1 + C - A F 

-e 7iVAv e Av c £ 
(3.2) 

([1] , relations (16) and (27)) . Here, v c is the value of 
parameter v for the critical droplet and A v e and Av c are 
the "half -widths" of the potential well and the potential 
barrier of the work of droplet formation on condensa­
tion nuclei at the v-axis , respectively. General iz ing the 
kinetic theory developed in [1 ,2 ] for the case of the dif-
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fusion growth of supercritical droplets, we are assured 
that Eq. (3.1) is still fulfilled; however, the relation 

fs - 3 0 C W 
.2/3 

(3.3) 

appears instead of (3.2). 

Relations (3.1)—(3.3) form the closed equation for 
the reference value of the ideal supersaturation O. 

This equation is responsible for the consistency 
between the absorption of the supersaturated vapor by 
supercritical droplets and the consumption of conden­
sation nuclei by these droplets and a rate of the external 
increase in the ideal supersaturation 3> in t ime. 

Let us represent this equation in the form which is 
important for further discussion. We introduce t ime ts 

using equality 

where 

ts = [(Avcy/2Wc]\r = 0 t , 

Wc = navTnRc 

(3.4) 

(3.5) 

Because the matter exchange between the critical drop­
let and the vapor occurs, as was already mentioned, in 
a free molecular regime, Wc represents, according 
to (3.5), the number of molecules absorbed by the crit­
ical droplet from the vapor per unit t ime. Then, param­
eter ts introduced by (3.4) characterizes [8, 9] the t ime 
of the establishment of the quasi-steady-state regime of 
overcoming the activation barrier of nucleation by the 
droplets; however, this characteristic is approximate 
because in (3.4) the vapor supersaturation £ is taken as 
equal to the reference value of the ideal supersatu­
ration <P. Time r 5 is actually important in the condition 
(4.1) of the applicability of the kinetic theory of nucle­
ation so that the approximation in the treatment of time ts 

seems to be insignificant. 

Using (1.1), (1.2), and (2.6), we specify (3.5) as 

Wc = 3 a T - ' ( l + Q v f . (3.6) 

From (3.1), (3.4), and (3.6) with the allowance for 
(2.15) and (3.2) at the free molecular growth of super­
critical droplets and, correspondingly, with allowance 
for (2.22) and (3.3) at the diffusion growth of supercrit­
ical droplets, we obtain 

Uv7 J 
( (A/6Bln2)Af/f . (h>\) 

(3.7) 
? = [ ( l / 6 n l n 2 ) A r / f f (h <* 1) . 

Equat ion (3.7) represented in the form identical for the 
free molecular and the diffusion regimes of the growth 
of supercritical droplets is quite important for further 
discussion. 

4 . C O N D I T I O N S O F T H E APPLICABILITY 
O F T H E KINETIC T H E O R Y O F N U C L E A T I O N 

Let us formulate the conditions of the applicability 
of the kinetic theory of nucleation, mentioned briefly 
in [ 1 , 2 ] . 

It was assumed in the kinetic theory that the activa­
tion barrier of nucleation is overcome by droplets in the 
quasi-steady-state regime during the entire stage corre­
sponding to the nucleation of supercritical droplets. Evi­
dently, to do so, it is necessary to fulfill the condition 

Atlts>\. (4.1) 

In view of (3.7), the fulfillment of condition (4.1) also 
secures the fulfillment of condition 

exp(AF| ; .„,)*> 1, (4.2) 

which guarantees that the stage corresponding to the 
nucleation of supercritical droplets will be accompa­
nied by the overcoming of a noticeable activation bar­
rier of nucleation by the droplets. 

In the case of the free molecular growth of supercrit­
ical droplets, it was assumed in the kinetic theory that 
the radii of supercritical droplets typical of the stage 
corresponding to their nucleation satisfy inequality R < 
X/a. Here , X is the mean free path of vapor molecules 
in the vapor -gas med ium estimated by the gas-kinetic 
relation 

X~(n, \ - ' - 2 / 3 (4.3) 

where n% is the number of passive gas molecules in the 
2/3 

unit volume of the vapor -gas medium ( v a character- -
izes the cross section of collisions between the mole­
cules of the vapor and the medium; it is assumed that 
n = «„,). Passing from R to variable p with the help of 
(1.2) and (2.4) and using (4.3) and the est imate p ~ Ap, 
we represent inequality R < X/a as 

where 

pX~0. ' ( / ! . . + / l . ) " 1 V a ' . 

(4.4) 

(4.5) 

In the case of the diffusion growth of supercritical 
droplets, the opposi te inequality R < X/a should be ful­
filled instead of R > X/a, which according to (1.2), 
(2.17), (4.3), and the est imate p ~ Ap is written as 

where 

Ap/px> 1, 

p x ~ a 2(wM + n g rV; 2 . 

(4.6) 

(4.7) 

The condition 

A p / p c > 1 (4.8) 

was also suggested in the kinetic theory of nucleation, 
where pc is the size of a supercritical droplet at the 
p-axis . According to (2.13), (2.15), (3.4), (3.6), and 
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equality p c = v ^ / 3 , in the case of the free molecular 
growth of supercritical droplets, we have 

Ap ^ \rtAvc) C 
p c 6\ v c l + £ 

At 
(4.9) 

(h> I or h < 1 ) . 

As is seen from (4.9), the inequality (4.8) is satisfied in 
this case under the fulfillment of condition (4.1) [coef­
ficient in (4.9) at multiple At/ts will be est imated in Sec­
tion 6 ] . In the case of the diffusion growth of supercrit­
ical droplets, the fulfillment of condit ion (4.8) follows 
directly from the inequality (4.6) and the relation 
already mentioned in Section 2, according to which the 
radius of a supercritical droplet is almost a lways much 
smaller than the X/a ratio. 

5. F U N D A M E N T A L S O F T H E R M O D Y N A M I C S 
O F T H E N U C L E A T I O N 

O N I N S O L U B L E W E T T A B L E N U C L E I 

The chemical potential of a liquid condensed on an 
insoluble wettable nucleus exhibits a max imum as a 
function of the droplet size [3, 10]. We denote the val­
ues of parameters corresponding to this m a x i m u m by 
the subscript zero. F rom (1.2), we have 

v 0 = 4 j i / ? 3 / 3 v a . (5.1) 

For the threshold value £ m of the vapor supersatura­
tion above which the nucleation of droplets on conden­
sation nuclei occurs in a barrierless manner, according 
to formula (6.16) in [3], we have 

Cth = 2 a / 3 v f , 

where 

a = (4ny/kBT)(3vJ4n) 
2/3 

(5.2) 

(5.3) 

(y is the surface tension of a droplet at its boundary with 
the vapor). Assuming inequality 

Vq/3 > 2a/3, (5.4) 

we see from (5.2) that 

& h < * l . (5-5) 

Let us represent the vapor supersaturation £ as 

^ C t h U - e ) , (5.6) 

where e is its relative deviation from the £ t h value. In the 
prethreshold region of the vapor metastability, inequal­
ities 0 < C, < £ t h are transformed into 0 < e < 1. 

Let us introduce parameter p0: 

39vl 
2 a dv2 

^ 3 

(5.7) 
o7 

where bv is the v-dependent chemical potential of a liq­
uid-compris ing droplet expressed in kBT units. Accord­

ing to formulas (3.4), (3.8), and (3.13) in [3], we then 
have 

v e = v „ ( l - 2 3p0 e ) . 

v c = v 0 ( l + 2 3 p 0 e ) . 

~ 7 / 2 

A C 2 2/3 - 1 / 6 3/2 

AF = -yav0 p0 e , 

(5.8) 

(5.9) 

A A I - 1 / 4 t - 1 / 2 2/3 - 1 / 1 2 - 1 / 4 , c . n . 

Ave = A v c = 2 3a v 0 p0 e , (5.10) 
where ve is the value of parameter v for the droplet in a 
stable equi l ibr ium with the vapor. 

In the situation where the nucleation of supercritical 
droplets is accompanied by the overcoming of the 
marked activation barrier of nucleation but occurs 
rather intensely, inequalit ies 

2 s A F s 15 

are true. 

F r o m (5.9) and (5.11), it follows that 

1/2 - 1 / 3 - 2 / 9 1/18 
e = a v 0 p 0 , 

(5.11) 

(5.12) 

where it is taken into account that the variation range of 
parameter (AF)113 is much narrower than that of param­
eter AF; correspondingly, it is assumed that 
( 3 A F / 2 7 / 2 ) 1 / 3 * 1. Relat ion (5.12) will be refined in Sec­
tion 6. 

Analytical expression (6.7) for bv was obtained 
in [3] at the exponential approximation of the work of 
wett ing the solid condensat ion nucleus. Taking this 
expression into account , we arrive at 

R0 = Rn + lln(sR2

n/2yl2) (5.13) 

(relation (6.10) in [3]), and using (5.7), we also have 

p0 = v0/k. (5.14) 

Here , Rn is the radius of a solid condensat ion nucleus 
and / is the correlation length in a liquid film formed 
around the nucleus; parameters s and k are determined 
by relations 

(5.15) 

& 3 4 t i / 3 / 3 v „ , (5.16) 

where a p T and GAY are the surface tensions at the bound­
aries be tween the nucleus and vapor and liquid, respec­
tively. According to (5.15), the parameter s represents 
the initial value of the spreading coefficient of condens­
ing liquid over the homogeneous surface of a solid wet-
table nucleus. It is suggested that in the case of the 
exponential approximat ion of the work of nucleus wet­
ting, which was considered for the illustration only, 

condit ion s > 2y/ 2 / /?^ is true. In accordance with (5.13), 
this condition provides for the inequality / ? 0 > Rn, 
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implying the existence of a threshold value of the vapor 
supersaturation. 

Let us assume the condition of the macroscopicity 
of condensation nuclei as 

RJl > 1. (5.17) 

At the relatively low logarithmic value in (5.13), we 
have 

R0~Rn, (5.18) 

which is fulfilled quite accurately and even without 
assuming the exponential approximation of the work of 
nucleus wetting. As is seen from (5.1) and (5.18), v 0 is 
approximately equal to the number of liquid molecules 
in the volume corresponding to that of the nucleus. 

According to (5.1), (5.14), (5.16), and (5.18), we 
have 

Po"Wl)\ (5.19) 
which allows us to determine p0 at the exponential 
approximation of the work of nucleus wetting using 
data on Rn and /. It follows from (5.19) and condition 
(5.17) that 

1/3 ^ , 
P o > 1. (5.20) 

The strong inequality (5.20) is true even without the 
assumption about the exponential approximation of the 
work of nucleus wetting. 

Representing (5.12) with the help of (5.1), (5.18), 
and (5.19) as 

e = (3/4K) a \va II) (///?„) (5.21) 

and allowing for the characteristic estimates a ~ 10 and 
v ^ 3 / / ~ 10~ l, we can see that condition (5.17) also pro­
vides for inequality 

z m < 1. (5.22) 
It follows from (5.8), (5.20), and (5.22) that 

v e = v 0 , v c = v 0 . (5.23) 

Evidently, (5.22) and (5.23) are true, with no regard for 
the exponential approximation of the work of nucleus 
wetting. 

We call the region of vapor metastability where ine­
qualities (5.11), (5.12) and (5.22) are fulfilled, as in [3], 
the "prethreshold" region. 

The parameters v 0 and p0 are taken as the reference 
parameters of the kinetic theory of nucleation. The 
interrelation between v 0 and Rn is easily established 
from (5.1) and (5.18). Then, using (5.19) at the expo­
nential approximation of the work of nucleus wetting, 
we can establish the interrelation between p0 and /; 
however, in the general case, to disclose this interrela­
tion, it is necessary [see relation (5.7)] to find 
|3 2 & v /dv 2 | 0 . This can be accomplished both thermody-
namically using the total disjoining pressure isotherm 
for thin liquid films on the surface corresponding to the 

nucleus and with experimental data by solving the 
inverse problem of the nucleation kinetics. 

6. KINETIC C H A R A C T E R I S T I C S 
O F T H E N U C L E A T I O N 

O N I N S O L U B L E W E T T A B L E N U C L E I 

According to (5.6) and (5.22), we have at a high 
degree of accuracy 

Because (6.1) is also true at £ = from (2.2), (2.12), 

and (6.1), at the same high degree of accuracy, we have 

<J>* = C<h- (6-2) 
Expression (6.2) for the reference value derived 

for macroscopic condensation nuclei, which has in its 
right-hand side the £ t h parameter known from thermo­
dynamic relation (5.2), greatly simplifies the kinetic 
theory of nucleation. 

Expression (6.2) is accurate enough to determine 
the <!>„. power-dependent values. However, the values 

dependent on 0„ . via the small deviation £ t h - also 

seem to be important in the kinetic theory. The refine­
ment of relation (5.12) and expression (6.2), which are 
needed to determine such values, will be our next goal . 

F rom (3.7) with the allowance for equality Ave = Avc 

followed from (5.10), we arrive at 

_ f ln(K/ t /67t ln2) (h > 1) 
l ? = **~ [ln(K /6nln2) {h < 1) , 

where it is taken that 

K = At/tt. (6.4) 

Let us denote the value of e determined according 
to (5.6) at £ = via e. Then, we have 

e = ( C h ( 6 - 5 ) 

Using (5.9) in (6.3) and allowing for (6.5), we obtain 
- 1 / 2 - 1 / 3 - 2 / 9 1/18 , £ £ N 

e ~qa v 0 p0 , (6.6) 
where 

f [ ( 3 / 2 7 / 2 ) l n ( K / i / 6 7 d n 2 ) ] 1 / 3 (h>\) 
1 = 

[ ( 3 / 2 7 / 2 ) l n ( K / 6 i x l n 2 ) ] 1 / 3 (h < 1) . 
(6.7) 

The parameter e introduced according to (6.5) is of 
importance because we can use it and equality (5.9) to 
express parameter T 

r « O A F / 3 e ) | E = g (6.8) 

followed from eqs. (2.1), (5.6), and (6.2). The value 
of e is also important because the time ts can be expressed 
via this value using (3.4) and (5.10). The parameter V and 
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the t ime ts serve as examples of values that depend quite 
heavily on 0 * via the small deviation O* . 

Relat ion (6.6) refines expression (5.12) determin­
ing the value of e 1 / 2 , which is typical of interval (5.11), 
i.e., of the prethreshold region of vapor metastabili ty. 
This refinement can be represented in the following 
form: 

- 1 / 2 1/2 

e ~qz . 
(6.9) 

As will be shown in Sections 8 and 9, the approxi­
mate equality 

q~l (6.10) 

is true. 

Then, from (5.22) and (6.9), it follows that 

e 1 / 2 « l . (6.11) 

Relation (6.6), together with (6.5), also permits us to 
easily refine expression (6.2) for O* . In view of (6.11), 

this refinement is insignificant. It is not so important 
when the dependence on becomes power-depen­
dent. Therefore, expression (6.2) will not be refined. 

Let us now pass to the main goal of this section. To 
simplify the expression, we will drop the bounds on 
either h > 1 or h < 1 in the formulas. 

Substituting (5.9) into (6.8) and using (6.6), we 
obtain 

, , 5 / 2 2/3 4/9 - 1 / 9 

2 qa v 0 p0 . (6.12) 

From (3.4) and (3.6) with the al lowance for (5.5), 
(5.10), (6.2), and (6.6), we have 

3 x 
.8/9 

0 3 / 2 n C l 2/3 2 /9 ' 

2 y u o p0 

Using (1.5), (5.2), and (6.2), we find 

Urn 
a 

Mm 

V 0 

(6.13) 

(6.14) 

We give further consideration first for the case of the 
free molecular growth of supercritical droplets. Substi­
tution of (5.2), (6.2), and (6.12) into (2.7) and (2.8) 
yields 

c ~ 2 3 dt (m + 3 ) /3m 1/9' 
a t - a p0 

(6.15) 

(5.23), (6.2), and (6.6) , we have 

A p _ am (v0\2,9At 
2U2q\Po 

(6.17) 

Represent ing ( v 0 / p 0 ) 2 / 9 as (4TC/3)2/9(//V^/3)2/3 with the 
help of (5.14) and (5.16), taking into account (6.10) and 
the characteristic est imates a ~ 10, / / v ^ 3 ~ 10, we can 
see that the coefficient at multiple At/ts in (6.17) is 
much larger than unity. Then, according to (6.17), con­
dition (4.8) is readily satisfied under the fulfillment of 
inequality (4.1). 

Because the radius Rc of the critical droplet exceeds 
the radius Rlt of a condensat ion nucleus, it follows from 
condit ion (4.8) that at the stage corresponding to the 
nucleation of supercritical droplets, their characterist ic 
radii are much larger than the radius Rn of a nucleus . 
Hence , at this stage, the parameter v determined by 
equality (1.2) accurately coincides with the true num­
ber of condensed vapor molecules in a droplet . 

Let us now consider the case of the diffusion growth 
of supercritical droplets. Using (5.2), (6.2), and (6.12) 
in (2.20) and (2.21), we have 

~ 3 / 2 ~ 
c ~ 2 3 

l/m qmlD v 0 

(7m + 3 ) /9m 

(m + 3 ) /3m 1 /9 ' 

a p0 

(6.18) 

2 U / 4 yV qmnSrnXD) V C"- + 

i n (m + 9 ) /6m 1/18 
" Po 

9) /18m 
(6.19) 

As was ment ioned in Section 4 , condit ion (4.8) is 
always fulfilled in this case . Correspondingly, at the 
stage of the nucleation of supercritical droplets , the 
parameter v still practically coincides with the true 
number of molecules in a droplet. 

Parameters c and h specified in this section deter­
mine the kinetic characterist ics of the nucleation on 
insoluble wettable nuclei that depend on these param­
eters. 

7. P A R A M E T R I Z A T I O N 
O F T H E C H A R A C T E R I S T I C T I M E 

O F T H E C R E A T I O N O F M E T A S T A B L E STATE 
IN VAPOR 

From (2.15), (2.22), (6.15), and (6.18) with allow­
ance for (5.2), (6.2), and (6.13), we obtain for both 
cases of the free molecular and the diffusion growth of 
supercritical droplets the following relation: 

, / 0 N 3 / m w w ^ , . 3 _ ( 2 m + 9) /3m 2/9 

1 2 b J UTJ V04» + 9)/9» • (6.16) At 
t. ' 

I f ? 
2 l 3 

\lm at„ 
Urn 1/3 

a p0 

m% v

( 4 m + 1)/3m' 
(7.1) 

F r o m (4.9) with al lowance for (5.2), (5.5), (5.10), Solving this expression with respect to r„ and using 
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definition (6.4), we have the relation 

Mm - _,.(4m+l)/3m 

W a a 
Mm 1/3 

Po 
(7.2) 

which parameterizes the characteristic t ime t„ of the 
creation of the metastable state in vapor and expresses 
it via parameter K. Directly from (6.4) and (6.13), we 
obtain 

Ar = 3 KT Vp 
^3/2^fv 2/3 W 
2 H^a pQ 

(7.3) 

We perform a further treatment first for the case of 
the free molecular growth of supercritical droplets. 
Substituting (7.2) into (6.15) and (6.16), we find 

2/9 
^i /3o iPo 

c ~ 2 3 

and 

„ , ^ . - 3 2/3,.22/9 

2TI(-Q°)K a v 0 

« „ „ 7/9 • 
3 2 

(7.4) 

(7.5) 

From (2.10) and (2.13) with allowance for (7.4) and 
(7.5), we have 

9 , -3 2/3 22/9 
Z K a v 0 

and 

Ap = 
~. " 3 , .5/9 
K 0 V 0 

,1/2 2/9 
4A) 

Solving (7.5) with respect to T ) ( - ° ° ) , we obtain 

- . 2 , 7 / 9 
, v 3q_nJt£o_ 

TR ° ° ) O 3 2/3 22/9" 

With the aid of (2.11) and (7.8) we find 

„ 2 , 7/9 

(7.6) 

(7.7) 

(7.8) 

(7.9) 

We assume that parameters K and h, which, accord­
ing to (6.7), determine the value of q, are the indepen­
dent free parameters of the kinetic theory of nucleation. 
In this case, formulas (7.2) and (7.8) express the time t«, 
and the concentration T | ( - ° ° ) via parameters K and h. 
However, formulas (7.3), (7.6), (7.7), and (7.9) also 
specify the kinetic characteristics of nucleation At, N, 
and Ap via the same parameters . Parameters K and h are 
more convenient for constructing the kinetic theory of 
nucleation than t„ and t | ( - ° ° ) and are as good as the ini­
tial parameters t„ and t | ( - ° o ) of a theory for describing 
the kinetic scenario of nucleation. 

Let us now consider the case of the diffusion growth 
of supercritical droplets. Substituting (7.2) into (6.18) 
and (6.19), we obtain 

2/9 
9 l / 3 - < 7 0 T o £ o _ 

KXa v 0 

(7.10) 

and 

. _ ( 3 K ) ' ^ ( - o o Y K T y ' V ' ° V o 

2 5 / 4

 q

ianMJ PT ' 

From (2.10) and (2.13) with al lowance for (7.10) 
and (7.11), we have 

,,5/4 / _ , 3 / 2 4 » 

( 3 n ) v K l J a v 0 

and 

2 qaxDp0 

Solving (7.11) with respect to r | ( - ° o ) , we obtain 

,5/4 , 3 / 2 - 4 » 

) a 1 / 6 v f 1 8 ' 
(7.14) 

With the help of (2.11) and (7.14), we find 

(3w) 

Formulas (7.2) and (7.14) express the t ime t„ and 
the concentration T | ( - < » ) via parameters K and h. How­
ever, formulas (7.3), (7.12), (7.13), and (7.15) express 
the kinetic characteristics of nucleation At, N, and Ap 
via the same parameters . It is apparent that in the case 
of the diffusion growth of supercritical droplets , the 
parameters K and h are also more convenient for con­
structing the kinetic theory of nucleation than parame­
ters t„ and T | ( - ° ° ) . 

With the aid of (6.4), the main condition (4.1) of the 
applicability of the kinetic theory, which in particular is 
also responsible for fulfilling conditions (4.2) and (4.8), 
is specified as 

K§> 1. (7.16) 

Using inequality (7.16), we can verify the fulfillment of 
condition (4.1) and, using parameter h, we can est imate 
the fulfillment of inequalities h > 1 or h 1 employed 
in the theory; these two facts are indicative of yet 
another important advantage of parameters K and h 
compared with parameters t„ and T | ( - ° ° ) . 
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8. P R O C E D U R E O F T H E C A L C U L A T I O N 
O F T H E KINETIC C H A R A C T E R I S T I C S 

O F N U C L E A T I O N AT T H E F R E E M O L E C U L A R 
G R O W T H O F S U P E R C R I T I C A L D R O P L E T S 

In the method proposed, we assume that parameters 
K and h are free but are limited by condition (7.16) and 
inequalities h > 1 or h < 1. Moreover, this method 
fully covers the domain of the applicability of a theory 
at once, thus indicating its efficiency. 

In the case of the free molecular growth of supercrit­
ical droplets considered in this section, there is yet 
another limitation imposed by condition (4.4). Let us 
disclose this limitation. F r o m (4.5) and (7.7) we have 

Ap l . . K a 1 / 3 v f 

Pi 2 q p0 

(8.1) 

(in our estimates, we do not approximate numerical 
multipliers in order to moni tor them more easily). 
Using (6.10) and (8.1) in (4.4), we obtain 

,1 /2 

K <l 

2/9 
Po 

a ( « . + n g ) v A F L Y ' 
(8.2) 

For the compatibi l i ty of (7.16) and (8.2) the ine­
quali ty 

,1 /2 2/9 
Po > 1 (8.3) 

is required. If this inequality is fulfilled, formulas (7.2), 
(7.3), and (7.6)-(7.9) will be valid within the ranges of 
the variation of parameters K and h admitted by con­
straints (7.16), (8.2) and h > 1 or h < 1. Calculations 
were based precisely on these formulas. 

Let us assign the following values of external 
parameters of a theory: 

a = 10, a = 10" 1 , nm = 1 0 1 7 c m " 3 , 

ng = 1 0 1 9 c m - 3 , v a = 10~ 2 3 c m 3 , (8.4) 

x = 5.4 x 10" 7 s, v j ° = 9 0 , p 0 = 1.7 x 1 0 3 , 

m = 1. 

Data given in (8.4) are quite realistic for typical con­
densing liquid (water) and its saturated vapor at com­
mon temperatures as well as for the passive gas at pres­
sures close to atmospheric . According to (5.3), the 
value of a corresponds to y = 77 dyne c m - 1 . The values 

of v 0

/ 3 and p0 satisfy inequalities (5.4) and (5.20). 
According to (5.1) and (5.18), the value Rn *= 1 0 - 6 c m 

corresponds to v 0

/ 3 . At the exponential approximation 
of the work of nucleus wetting, according to (5.19), the 
value of po corresponds to / = 10~7 cm, which is quite a 

realistic quantity [11]. The value of Rn ~ ICt6 c m is so 
large that the condition of nucleus macroscopicity (5.17) 
is already fulfilled; however, it is so small that the value 
of £ t h = 7.4 x 10" 2 of the threshold vapor supersaturation 
can still be reliably controlled during the experiment . 
According to (1.4), the value of m corresponds to a rel­
atively representative (linear in t ime) growth of the 
ideal supersaturation O. 

Let us perform the calculations using the proposed 
procedure and the values of parameters from (8.4). In 
this case, inequality (8.3) is fulfilled. F r o m (7.16) and 
(8.2) we have inequalities 

1 <g K «§ 2 x 10 2 , (8.5) 

which determine the admissible region of the variation 
of parameter K. 

According to (7.2), (6.14), and (7.3), we obtain 

t„ ~ 7.7 x 10 K s , 

t* = 5 . 8 x 10K s , 

Ar = 3 . 8 x 10" 2 4 'K s . 

(8.6) 

(8.7) 

(8.8) 

The units of measurement of dimentional quantit ies are 
indicated. The dependence of parameter q on K and h is 
given by the equali ty (6.7). Time moments ton and toii 

can be readily obtained with the help of (2.16). 

Finally, from (7 .6)- (7 .9) , we have 

N ~ 
[4 .9xloVic~ 3 c m " 3 (h>\) 

[ 4 . 9 x IOV^K"3 c m " 3 (h<l), 

A p - 5 . 3 x I02q 'K, 

^ ( - c o ) » 4.9 x l oV^K 3 c m 

(8.9) 

(8.10) 

(8.11) 

Let us find out to what extent condit ions (4.2) and 
(6.10) are fulfilled. In the situation where h > 1, it is 
seen from (6.3) and (6.7) that inequality (4.2) is ful­
filled over the entire range (8.5); the approximate 
equali ty (6.10) is a lso fulfilled, provided that inequality 
h > 1 does not become too strong. The impossibili ty of 
the strong inequality h > 1 follows from the fact that, 
according to (8.11), concentration r | ( - o o ) increases 
simultaneously with parameter h; however, in practice, 
the concentrat ion T | ( - o o ) usually does not exceed the 
values of the order of 10 5 c m - 3 . 

In the situation where h < 1, it is seen from (6.3) and 
(6.7) that (4.2) and (6.10) are fulfilled only for the l im­
iting values and only in close proximity to the upper 
boundary of the region (8.5). 
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9. P R O C E D U R E F O R C A L C U L A T I N G 
T H E KINETIC C H A R A C T E R I S T I C S 

O F NUCLEAT ION AT T H E D I F F U S I O N G R O W T H 
O F S U P E R C R I T I C A L D R O P L E T S 

Using the same procedure as in Section 8, we should 
take into account the additional constraint imposed by 
condition (4.6). Let us disclose this constraint. From 
(4.7) and (7.13), we obtain 

~ 1/2 T u 

2 q^D p0 

1/3, .5/9 

•a(n„ + ng) v a . 2/9 (9.1) 

Account ing for (2.6), (2.19), and (4.3) and the gas-
kinetic estimate D ~ X v r / 3 , we find 

(x/xD)(n„ + ng)va~\. 

With the aid of (9.2) let us represent (9.1) as 

1 Ap 

Px 
m -a(nm + n%)va 

2 q 

„ 1/3, ,5/9 
Kfl V 0 

2/9 
Po 

(9.2) 

(9.3) 

which visually coincides with (8.1), al though Ap and px 
have already been determined in a different manner, 
than in (8.1). Using (6.10) and (9.3) in (4.6), we obtain 

J / 2 

K > 
2/9 

Po 
a(nm + ne)vaa™v>f 

(9.4) 

Within the variation ranges of parameters K and h 
admissible by the strongest of inequalities (7.16), (9.4), 
and constraints h > 1 or h < 1, formulas (7.2), (7.3), 
and (7.12)—(7.15) will be valid. These formulas were 
used as the basis for the calculations. 

Let us set the following values of the external 
parameters of a theory: 

a = 10, a = 1, n„ = 1 0 1 7 c m - 3 , ng = 1 0 1 9 c m - 3 , 

v a = 10~ 2 3 c m 3 , x = 5.4 x l O - 7 s, 

D = 1 c m 2 s - 1 , t D = 8.9 x 10" 1 1 s, 
(9.5) 

seems to be the strongest of (7.16) and (9.4). In view of 
the last inequality 

K > 2 x l 0 , (9.6) 
that determines the admissible region of the variations 
in parameter K. 

According to (7.2), (6.14), and (7.3), we obtain 

t„ - 7.7 x 10K S, (9.7) 

*# = 5.8KS, (9.8) 
and 

A f = 3 . 8 x 10 V'K S. 

Finally, from (7.12)—(7.15), we have 

(9.9) 

fl.l xloV'V 3 ' 2 c m - 3 ( h > \ ) 
N~\ H ' (9.10) 

11.1 x \ t f q m h K m c m " 3 (h<\), 

and 

Ap = 3 . 2 x 10 V'K, 

r | ( - o o ) = 1 . 1 x 10Y /2/IK-3/2 c m - 3 . 

(9.11) 

(9.12) 

Let us find out to what extent condit ions (4.2) and 
(6.10) are fulfilled. At h > 1, it can be easily established 
from (6.3) and (6.7) that inequality (4.2) and approxi­
mate equality (6.10) are fulfilled within the whole 
region (9.6), provided that the inequalities (9.6) and 
h > 1 are not too strong. If inequality (9.6) had been too 
strong, i.e., if parameter K had been too large, t ime 

would be very large, which is of not practical interest to 
us . However, if inequality h > 1 had been too strong, 
concentration T ) ( - o o ) would be rather high (at the 
already substantiated not excessively large parameter K), 
which (as was already mentioned) in practice does not 
usually exceed values of about 10 5 c m - 3 . 

However, at h < 1, it follows from (6.3) and (6.7) that 
inequality (4.2) and the approximate equality (6.10) are 
fulfilled over the entire range (9.6) except for the case of 
overly large values of parameter K [corresponding, 
according to (9.8), to very large values of t ime f*]. 

v 0

/ 3 = 9 0 , po = 1.7 x 1 0 3 , m = 1. 

The difference between the data in (9.5) and (8.4) is 
only in using a = 1 instead of a = 1 0 - 1 . However, this 
distinction is responsible for the passage from the free 
molecular to the diffusion growth of supercritical drop­
lets. The fact that coefficient a can be close to unity is 
admitted by the results of a number of experiments [ 12] 
and studies into molecular dynamics [ 1 3 , 1 4 ] . For com­
pleteness, t ime x D is included into the initial parame­
ters, al though it is the function of n„, v„, and D 
[see (2.19)] . The value of xD was determined with the 
aid of (2.19). 

Let us perform calculations that use the values of 
parameters from (9.5). In this case, inequality (9.4) 

10. A C C O U N T F O R T H E POLYDISPERSITY 
O F I N S O L U B L E W E T T A B L E N U C L E I 

It was assumed in the preceding discussion that con­
densation nuclei are identical; i.e., they are monodis -
perse. Let us demonstrate how the kinetic theory of 
nucleation reported above can be generalized for the 
case of polydispersity of insoluble wettable condensa­
tion nuclei. 

The polydispersity of nuclei involves the account 
for the distribution of initial concentration of nuclei 
over their radii Rn. Let us make the relatively realistic 
assumption that the density of this distribution is prac­
tically equal to zero at Rn > R„ and markedly differs 
from zero at R„<R„, where R„ is the radius of the larg-

COLLOID JOURNAL Vol. 62 No. 5 2000 



KINETIC THEORY OF C O N D E N S A T I O N O N I N S O L U B L E W E T T A B L E NUCLEI 573 

est of the nuclei encountered in practice. How the den­
sity of the distribution of initial nucleus concentrat ions 

depends on R„ at Rn < R„ is insignificant for further dis­
cussion. It is only important that the density only 
slightly depend on Rn compared with the " j u m p " that 

occurs during the passage from Rn < Rn to Rn>R„. 
Having in mind the estimation character of forth­

coming discussion, we will use approximate equa­
lity (6.10) and relation (5.14), which is true at the expo­
nential approximation of the work of nucleus wetting, 
without mentioning this fact especially. From (5.6) and 
(5.12), we obtain an estimate for the width A£ of the 
prethreshold region of vapor metastability at the £-axis: 

A > - -2/3 -4/9, . / .N.1/9V- , 1 f l 1 N 

A £ ~ a V 0 ( V „ / * ) (10.1) 
As is seen from (5.6) and (5.22), as the radius Rn varies, 
this region moves along the £-axis approximately at a 
rate dC,tJdRn estimated, according to (5.1), (5.2), and 
(5.18), by the relation 

d^Rn~-UK- (10.2) 
As the metastable state in vapor is developed, its 

supersaturation £ evidently fits the range which is the 
prethreshold region compared both with nuclei for 

which Rn ~ Rn and with all the nuclei within the range 

Rn - ARn <Rn< Rn whose width ARn is est imated as 

A Q R = n ~\d^K\R^^Rn- (10-3) 

All these nuclei are the possible centers of the nucle­
ation of supercritical droplets. 

F r o m (10.1)-(10.3) , we have 

A f l „ / / ? „ ~ « - 2 / 3 V o 4 / 9 ( v 0 / f c ) 1 / 9 , (10-4) 

where, for simplicity, it is not indicated that v 0 refers to 

Rn. It is the relation (10.4) that est imates the width ARn 

of the range where the nucleation of supercritical drop­
lets actually occurs. According to (10.4), the inequality 

ARn/Rn < 1 (10.5) 

is valid for macroscopic nuclei . 
Because the total number of supercritical droplets 

formed during nucleation serves as the most important 
kinetic characteristic of this process, the condition 

a / V | AR„<1 (10.6) 
NdR, 

should be fulfilled in order to use the kinetic theory of 
nucleation discussed above. This condition guarantees 
the smallness of the relative variation in the number of 

droplets N with the variation in Rn over the range R„ -

ARn<Rn<Rn. 
According to (2.9), the dependence of JV on Rn (at 

the preset concentration T ) ( - ° ° ) ) is strongest at h > 1. In 
this case, this dependence turns out to be the strongest 

of all dependences of the kinetic characteristics of 
nucleation on Rn, and, hence, it is the crucial one in the 
discussion of the deviation of condensat ion nuclei from 

monodispersi ty within the range R„ - ARn <R„< R„. 

In the case of h > 1, from (2.10) and (6.16) with 
al lowance for (5.1) and (5.18) at the free molecular 
growth of supercritical droplets we have 

dN Am + 3 N 
dR„ m R' 

(10.7) 

Using (10.4) and (10.7) , we reduce condit ion (10.6) to 
the inequality 

4m+ 3 - 2 / 3 , . - 4 / 9 , , , , s l /9 . , 
•a v 0 (v 0 /fc) <5= 1 m 

(10.8) 

(it is not indicated whether v 0 refers to the value of R„). 
The macroscopici ty of nuclei secures the fulfillment of 
inequality (10.8) (provided that the m value is not too 
small) . 

At the diffusion growth of supercritical droplets in 
the case of h > 1, from (2.10) and (6.19) with allow­
ance for (5.1) and (5.18), we have 

^ 2m + 3N 
dRn 2m Rn- U V ; 

Using (10.4) and (10.9), we reduce condit ion (10.6) to 
the inequality 

2m + 3 - 2 / 3 

2m 
V V o / * ) " 9 ^ ! . (10.10) 

The macroscopici ty of condensat ion nuclei secures the 
fulfillment of inequality (10.10), provided that m value 
is not too small . 

Hence , it is seen that to account for the polydisper-
sity of insoluble wettable condensat ion nuclei , it is suf­
ficient to perceive the Rn value as R„, and r\(-°°) as the 
total initial concentration of condensat ion nuclei whose 
radii Rn fit the range R„ - ARn < Rn < R„, which is 
responsible for the nucleation of supercritical droplets . 
The width of this range ARn is given by relation (10.4). 
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