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An analytical treatment of the nonlinear kinetic equations for fast relaxation of coexisting short and
lengthy micelles in surfactant solutions is presented. The kinetic equations can be written as a
hierarchical set of differential equations for the moments of the aggregation number distribution
function of micelles. It is shown that the moment equations can be successively integrated. As
examples of the general approach, particular cases of short spherical micelles, lengthy cylindrical
micelles, and coexisting short and lengthy micelles have been considered and compared to the
results of linear kinetic theory of micellar fast relaxation. The results show that there is a strong
interplay between coexisting short and lengthy micelles, even in the case when the total number of
surfactant molecules aggregated in short micelles is small in comparison with that in lengthy
micelles. © 2009 American Institute of Physics. �DOI: 10.1063/1.3204699�

I. INTRODUCTION

Speaking of fast relaxation in surfactant solution above
the critical micelle concentration �cmc�, which is defined by
the condition that the total number of surfactant molecules in
micelles is about 10% of the number of surfactant mono-
mers, we assume a stepwise relaxation process with a fixed
total number of micelles and a time scale much smaller than
that for slow relaxation to the final equilibrium. As a result of
fast relaxation, the quasi-equilibrium distributions of sub-
critical premicellar aggregates and micelles �as stable mo-
lecular aggregates� have been established separately, but
their mutual equilibrium has not yet been reached. The quasi-
equilibrium distributions are the separate local �in terms of
the aggregation number� equilibrium distributions of aggre-
gates in the aggregation number axis with the parameters
varying in time relatively slowly. These local distributions
evolve on the stage of slow relaxation to a final one-piece
equilibrium distribution of molecular aggregates covering all
aggregation numbers.

The foundations of the kinetic theory of fast relaxation
in micellar solutions were build by Aniansson and Wall,1,2

Almgren et al.,3 Kahlweit,4 and Kahlweit and Teubner.5 A
modern review on the subject is given by Zana.6 Aniansson
and co-workers1–3 proposed a procedure of solution of the
kinetic equations of micellization by finding the time-
dependent coefficients of expansion of the linearized �with
respect to the Gauss local equilibrium distribution� nonequi-
librium distribution function of spherical micelles in the Her-
mitian polynomials. This procedure allowed them to obtain a
hierarchical set of the specific times of the fast relaxation in
solutions with spherical micelles. An extension of the linear
theory to the case of spherical micelles and lengthy micelles

with the fusion-fission mechanism of micelle formation was
done by Kahlweit,4 Kahlweit and Teubner,5 and Waton.7 A
generalization of the linear kinetic theory to the case of
lengthy cylindrical micelles with the stepwise molecular
mechanism of micelle formation was proposed by Shchekin
et al.8 using an expansion in the Laguerre polynomials. Fast
relaxation of coexisting spherical and cylindrical micelles
was recently studied within the same framework in Ref. 9.

The characteristic feature of the approaches from Refs.
1–3, 8, and 9 is considering only the final stage of fast re-
laxation where the deviations from the local quasi-
equilibrium distributions are small and the relaxation has a
pure exponential character. This justifies the linearization of
the kinetic equation for the aggregation number distribution
function of aggregates and using for solving the correspond-
ing linear kinetic equation a technique of separating vari-
ables with the help of appropriate polynomials. The tech-
nique cannot be applied for the solution of the kinetic
equation on the arbitrary stage of fast relaxation with nons-
mall deviations from the local quasi-equilibrium distribu-
tions.

We use in this paper a moment approach to find a solu-
tion of the nonlinear kinetic equations for a stepwise fast
relaxation in micellar solutions. The nonlinearity of the ki-
netic equations is provided by the dependence of a rate co-
efficient in the equation on the surfactant monomer concen-
tration.

The moment approach is one of the standard methods in
the theory of kinetic equations and it had been used for study
of slow relaxation in micellar systems with the stepwise mo-
lecular mechanism of micelle formation1–3,10,11 and with the
fusion-fission mechanism also.7 The moment approach to the
nonlinear kinetic equations of aggregation allows us to con-
sider the fast relaxation from the beginning to the end, start-
ing from the initial arbitrary disturbance of the micellar sys-
tem and finishing by the exponential approaching a quasi-
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equilibrium state. The central idea of the approach is that the
kinetic equations of aggregation can be written as a hierar-
chical set of differential equations for the moments of the
aggregation number distribution function of micelles. Al-
though these moment equations can be nonlinear too, it is
possible to integrate them successively �even in an analytical
form in particular cases�. Because only the moments of the
distribution function can be observable in kinetic experi-
ment, the information on their time dependence obtained
from the integration will be sufficient for describing the
whole behavior of a nonequilibrium distribution function.

As examples of the general moment approach in the
nonlinear kinetics of fast relaxation in micellar solutions, we
will consider particular cases of short spherical micelles,
lengthy cylindrical micelles, and coexisting short and
lengthy micelles. The results will be compared to the results
of linear kinetic theory of micellar fast relaxation.1–3,8,9

II. KINETIC EQUATION OF MICELLIZATION
AND QUASI-EQUILIBRIUM DISTRIBUTIONS

Let us consider a micellar solution above the second
critical cmc �cmc2, which is defined by the condition that the
total number of molecules in lengthy micelles is about 10%
of the total number of surfactant monomers� with coexisting
short and lengthy molecular aggregates of surfactant. The
kinetic equation describing the stepwise evolution in time t
of the distribution function cn�t� of molecular aggregates in
aggregation number n is the Becker–Döring master equation

�cn

�t
= − �Jn − Jn−1� , �1�

where

Jn = jn
+cn − jn+1

− cn+1 �2�

is the flux of aggregates in the aggregation number axis be-
tween numbers n and n+1. Here jn

+ is the monomer capture
rate �the number of surfactant monomers captured out the
solution per unit of time by the aggregate with aggregation
number n� and jn+1

− is the monomer emission rate �the num-
ber of surfactant monomers emitted into the solution per unit
of time by the aggregate with aggregation number n+1�. The
rate jn+1

− is independent of the surfactant concentration in the
solution and can be determined with the help of the mono-
mer capture rate j̆n

+ at quasi-equilibrium state. Denoting the
quantities at the quasi-equilibrium state with a breve and
recognizing that the flux Jn turns to zero at this state, we
have

jn+1
− = j̆n

+ c̆n

c̆n+1

. �3�

The rate jn
+ is directly proportional to the surfactant monomer

concentration c1, so we can write

jn
+ = j̆n

+c1

c̆1

. �4�

Substituting Eqs. �3� and �4� to Eq. �2�, we finally get

Jn = j̆n
+c̆n� c1cn

c̆1c̆n

−
cn+1

c̆n+1
� . �5�

Instead of distribution cn�t�, it is more convenient to use
a relative deviation �n�t� of the distribution function cn�t�
from the quasi-equilibrium distribution c̆n,

�n =
cn − c̆n

c̆n

, cn = c̆n�1 + �n� . �6�

Below we will be interested mostly in monomers and rather
large aggregates with aggregation numbers n�1. Using Eq.
�6� in Eq. �5� and replacing �n+1−�n with ��n /�n at n�1, we
get

Jn = j̆n
+c̆n��1 + �1�n −

��n

�n
� . �7�

Replacing Jn−Jn−1 with �Jn /�n at n�1 and substituting Eq.
�7� in Eq. �1� yields

c̆n
��n

�t
= −

�

�n
� j̆n

+c̆n��1 + �1�n −
��n

�n
�� . �8�

The nonlinear term �1�n on the right-hand side of Eq. �8�
had usually been neglected in the previous analysis of fast
relaxation1–3,8,9 under assumptions �n�1, �1�1. These as-
sumptions are satisfied on the final stage of fast relaxation
only. To describe the very early and the intermediate stages
of fast relaxation, we need to keep this term in the kinetic
Eq. �8�. The corresponding peculiarities will be in the focus
of our investigation below.

Let us turn now to analysis of the profile of the dimen-
sionless �expressed in thermal units kBT, where kB is the
Boltzmann constant and T is the temperature of the solution�
aggregation work Wn as a function of aggregation number n.
A typical plot12–14 of the work at surfactant concentration in
solution above cmc2 is shown in Fig. 1. We will not consider
here the case when globular and spherocylindrical micelles
are simultaneously present in the solution and the depen-

n(1)c n(1)s n(2)c n(2)s n0 n

W(1)
c

Wn

W(2)
c

W0
W(2)

s

W(1)
s

FIG. 1. A typical aggregation work Wn of surfactant aggregate as a function
of the aggregation number n at total surfactant concentration in solution
above the cmc2. The upper indices �1� and �2� number the corresponding
maxima and minima points. The lower indices s and c refer to stable and
critical micelles, respectively. The index 0 indicates the beginning of linear
dependence of Wn on n.
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dence of aggregation work on the aggregation number of
surfactant monomers in micelles is divided into two
branches.11

There are droplet and quasidroplet models for the work
of micelle formation which determine every contribution to
the work as a function of the aggregation number n.14–19

These models give a behavior of the work of droplet forma-
tion that is consistent with the plot shown in Fig. 1. We will
not consider in this paper such detailed models and restrict
themselves only with most general peculiarities of the plot in
Fig. 1.

There are first and second maxima and first and second
minima in the plot in Fig. 1. The quantities corresponding to
these extrema are denoted with superscripts �1� and �2�. With
the help of subscripts c and s we distinguish the maxima and
the minima. The vicinity of the first minimum corresponds to
the range of aggregation numbers where short micelles accu-
mulate �the term “short micelles” refers to spherical or qua-
sispherical micelles�. We will assume that the corresponding
potential well is sufficiently narrow, and quasi-equilibrium
distribution of short micelles in the well can be described by
a Gaussian.

Lengthy micelles �they may be cylindrical or disklike
micelles� are located at n�nc

�2�. It is known12,15,16 that the
behavior of the aggregation work above the cmc2 becomes
linear starting from some aggregation number. We denote
this number in Fig. 1 by n0. The behavior of the aggregation
work Wn with the distinguished maxima and minima �shown
in Fig. 1� allows us to write relaxation equations for fast
relaxation after initial disturbance separately for short and
lengthy micelles. It will be done in Secs. III and IV.

III. MOMENT EQUATIONS FOR SHORT MICELLES

First, we will consider fast relaxation of short micelles
accumulated within the first potential well in the work of
aggregate formation in Fig. 1. Let us multiply both parts of
Eq. �8� by nk where k=0,1 ,2 , . . . and sum the result over the
first potential well. Passing from summing to integration at
n�1 yields

	
micelles
short

nkc̆n
��n

�t
dn = − 	

micelles
short

nk �

�n

�� j̆n
+c̆n��1 + �1�n −

��n

�n
��dn . �9�

The words short micelles in the lower limit of integration
indicate the region of the first potential well.

Integrating the right-hand side of Eq. �9� by parts and
using the natural for fast relaxation conditions that the flux Jn

and deviation �n�t� tend to zero at the boundaries of the first
potential well, we find

	
micelles
short

nkc̆n
��n

�t
dn = k�1	

micelles
short

nk−1 j̆n
+c̆n�1 + �n�dn

+ k	
micelles
short

�n
�

�n
�nk−1 j̆n

+c̆n�dn . �10�

We used integration by parts twice to obtain the second term

on the right-hand side of Eq. �10�. Thus we completely elimi-
nate the derivatives of unknown function �n with respect to n
from the equation. This will facilitate our next task.

We will assume that the potential well for short micelles
and the corresponding quasi-equilibrium distribution in ag-
gregation numbers are sufficiently narrow, so we can use a

quadratic approximation for the aggregation work W̆n,

W̆n = W̆s
�1� +

1

2
�n − n̆s

�1�

�n̆s
�1� �2

,

�11�
n̆s

�1� − �n̆s
�1� � n � n̆s

�1� + �n̆s
�1�, �n̆s

�1� � n̆s
�1�.

Here n̆s
�1� is the location �in the aggregation number axis� of

the aggregation work minimum for short micelles in the
quasi-equilibrium state �see first potential well in Fig. 1�,
W̆s

�1�
W̆n �n=n̆
s
�1�, �n̆s

�1�
�d2W̆n /dn2 �n=n̆
s
�1��−1/2.

According to the Boltzmann principle, the quasi-
equilibrium distribution c̆n can be written in the potential
well for short micelles as

c̆n = c̆s
�1�e−�W̆n−W̆s

�1��, �12�

where c̆s
�1�
 c̆n �n=n̆

s
�1�. In view of Eqs. �11� and �12�, the quasi-

equilibrium distribution of short micelles in the first potential
well has the form of the Gauss distribution,

c̆n = c̆s
�1� exp�−

1

2
�n − n̆s

�1�

�n̆s
�1� �2�,

�13�
n̆s

�1� − �n̆s
�1� � n � n̆s

�1� + �n̆s
�1�.

The total concentration c̆M
�1� of short micelles, their aver-

age aggregation number n̆M
�1�, and dispersion �n̆M

�1� of aggre-
gation numbers are determined at the quasi-equilibrium state
as

c̆M
�1� 
 	

micelles
short

c̆ndn , �14�

n̆M
�1� 


1

c̆M
�1�	

micelles
short

nc̆ndn = n̆s
�1�, �15�

��n̆M
�1��2 


1

c̆M
�1�	

micelles
short

�n − n̆M
�1��2c̆ndn = ��n̆s

�1��2. �16�

It is clear from Eq. �13� and definitions �14�–�16� that the
location of the aggregation work minimum for short micelles
and the quantity �n̆s

�1� coincides with the average aggrega-
tion number and the aggregation number dispersion, respec-
tively.

The rate j̆n
+ is proportional to the probability of collision

between monomer and aggregate with the aggregation num-
ber n. As a consequence, it should be proportional to the
collision cross section, i.e., in the case of spherical aggre-
gates, to the surface area of the aggregate which depends on
n as n2/3. Thus j̆n

+�n2/3. This is a regular assumption on j̆n
+ in

the kinetics of nucleation20–22 in the absence of a controlled
diffusion process onto aggregate.
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Taking into account Eq. �13� and strong inequality
�n̆s

�1�� n̆s
�1�, which characterizes the relative narrowness of

the first potential well, we can use an approximation

j̆n
+ � j̆n

+�n=n̆s
�1� 
 j̆M

�1�, n̆s
�1� − �n̆s

�1� � n � n̆s
�1� + �n̆s

�1�

�17�

in the integrand of Eq. �10�. Substituting Eqs. �13� and �11�
into Eq. �10� and taking into account Eqs. �15�–�17�, we get

	
micelles
short

nkc̆n
��n

�t
dn = kj̆M

�1���1	
micelles
short

nk−1c̆n�1 + �n�dn

+ �k − 1�	
micelles
short

nk−2c̆n�ndn

−
1

��n̆M
�1��2	

micelles
short

nk−1c̆n�n�n − n̆M
�1��dn� .

�18�

Let us now define

Mk
�1� 


1

c̆1
	

micelles
short

nkc̆ndn , �19�

�Mk
�1��t� 


1

c̆1
	

micelles
short

nkc̆n�n�t�dn . �20�

It is evident that the time-independent quantities Mk
�1� are the

moments of the quasi-equilibrium distribution c̆n of short mi-
celles. According to definitions �14�–�16�, we can link the
moments Mk

�1� with the total concentration of short micelles,
their average aggregation number, and their aggregation
number dispersion by the relations

M0
�1� =

c̆M
�1�

c̆1

, M1
�1� =

c̆M
�1�

c̆1

n̆M
�1�, M2

�1� =
c̆M

�1�

c̆1

��n̆M
�1��2 + ��n̆M

�1��2� .

�21�

The time-dependent quantities �Mk
�1� �k=0,1 ,2 , . . .� de-

scribe the deviations of the moments of nonequilibrium dis-
tribution cn from their quasi-equilibrium values Mk

�1�. Substi-
tuting Eqs. �19� and �20� into Eq. �18�, we get

d

dt
�Mk

�1� = − kj̆M
�1�� �Mk

�1�

��n̆M
�1��2 − � n̆M

�1�

��n̆M
�1��2 + �1�t���Mk−1

�1�

− �k − 1��Mk−2
�1� − �1�t�Mk−1

�1� � . �22�

We keep the third term in the square brackets on the right-
hand side of Eq. �22� in view of the factor k−1 at large k. It
can be shown that if we take into account in Eq. �10� the
second term in the expansion of the coefficient j̆n

+ in powers
of n− n̆s

�1�, it will bring a small �less than 1%� rescaling of the
quantity n̆M

�1� / ��n̆M
�1��2 in the second term in the square brack-

ets on the right-hand side of Eq. �22�. It justifies the accuracy
used in deriving Eq. �22�.

Equations �22� at different k=0,1 ,2 , . . . form a system
of coupled hierarchical equations which can be completed by

adding the balance equation of surfactant matter in the solu-
tion. This procedure will be considered in Secs. V and VII.

IV. MOMENT EQUATIONS FOR LENGTHY
MICELLES

Now we will consider fast relaxation of lengthy micelles
in the interval �nc

�2� ,	� of aggregation numbers in Fig. 1.
According to previous theoretical and experimental
data,10,12–15 we assume that the transition zone from short to
lengthy micelles lies in the interval �nc

�2� , n̆0�, and the aggre-

gation work W̆n becomes linear starting from n= n̆0. Multi-
plying both parts of Eq. �8� by nk, where k=0,1 ,2 , . . ., and
integrating the result over the interval n� n̆0 �lengthy mi-
celles region� yields

	
micelles
lengthy

nkc̆n
��n

�t
dn

= − 	
micelles
lengthy

nk �

�n
� j̆n

+c̆n��1�1 + �n� −
��n

�n
��dn . �23�

The words lengthy micelles in the lower limit of integration
indicate the lengthy micelles region.

Similar to the case of short micelles, we can integrate the
right-hand side of Eq. �23� by parts and use the boundary
conditions for the flux Jn and deviation �n�t�. One of the
boundary conditions requires that Jn and �n�t� tend to zero as
n→	, but Jn and �n�t� can be nonzero at n= n̆0. It means that
additional integration terms appear in Eq. �23�, but we can
neglect them because other terms are much larger �the inter-
val �nc

�2� , n̆0� is much shorter than the lengthy micelles re-
gion�. Thus, integrating by parts twice, we can write

	
micelles
lengthy

nkc̆n
��n

�t
dn = k�1	

micelles
lengthy

nk−1 j̆n
+c̆n�1 + �n�dn

+ k	
micelles
lengthy

�n
�

�n
�nk−1 j̆n

+c̆n�dn . �24�

The linearity of the aggregation work W̆n as a function of
aggregation number at n� n̆0 means

W̆n = W̆n̆0
+

n − n̆0

� n̆l

, n 
 n̆0. �25�

Here W̆n̆0

W̆n �n=n̆0

, �n̆l
�dW̆n /dn �n=n̆0
�−1, the physical

meaning of the quantity �n̆l we will clarify below.
According to the Boltzmann principle, the quasi-

equilibrium distribution c̆n can be written at n� n̆0 as

c̆n = c̆n̆0
e−�W̆n−W̆n̆0

�, �26�

where c̆n̆0

 c̆n �n=n̆0

. In view of Eqs. �25� and �26�, we have a
pure exponential law for the dependence of quasi-
equilibrium distribution on aggregation number n,

c̆n = c̆n̆0
exp�−

n − n̆0

�n̆l
�, n � n̆0. �27�
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The total concentration c̆M
�2� of lengthy micelles, their av-

erage aggregation number n̆M
�2�, and dispersion �n̆M

�2� of ag-
gregation numbers are determined in the quasi-equilibrium
state as

c̆M
�2� 
 	

micelles
lengthy

c̆ndn , �28�

n̆M
�2� 


1

c̆M
�2�	

micelles
lengthy

nc̆ndn = n̆0 + �n̆l, �29�

��n̆M
�2��2 


1

c̆M
�2�	

micelles
lengthy

�n − n̆M
�2��2c̆ndn = ��n̆l�2. �30�

It is clear from Eq. �27� and definitions �28�–�30� that the
quantity �n̆l coincides with the aggregation number disper-
sion. It should be noted that �n̆l may be much larger than n̆0

for lengthy micelles.
Similar to the case of short micelles, the rate j̆n

+ for
lengthy micelles should be proportional to the cross section
of the molecular collision with the micelle. Evidently, this
cross section will be proportional to the total surface area of
the micelle. Taking into account the linearity of the micelle
surface area in the aggregate number at n
 n̆0 and neglecting
the possible deviations in absorption and emission of mono-
mers by micelle endcaps for comparatively large micelles,
we can use an approximation

j̆n
+ = j̆M

�2� n

n̆M
�2� , n 
 n̆0, �31�

where j̆M
�2�= j̆n

+ �n=n̆
M
�2�. Note again that it is true in the absence

of a controlled diffusion process onto aggregate.
Substituting Eqs. �27� and �31� into Eq. �24� and taking

into account Eq. �30� yields

	
micelles
lengthy

nkc̆n
��n

�t
dn = k

j̆M
�2�

n̆M
�2���1	

micelles
lengthy

nkc̆n�1 + �n�dn

+ k	
micelles
lengthy

nk−1c̆n�ndn

−
1

�n̆M
�2�	

micelles
lengthy

nkc̆n�ndn� . �32�

Let us now define

Mk
�2� 


1

c̆1
	

micelles
lengthy

nkc̆ndn , �33�

�Mk
�2��t� 


1

c̆1
	

micelles
lengthy

nkc̆n�n�t�dn . �34�

It is evident that time-independent quantities Mk
�2� are the

moments of the quasi-equilibrium distribution c̆n of lengthy
micelles. According to definitions �28� and �30�, we can link
the moments Mk

�2� with the total concentration of lengthy
micelles, their average aggregation number, and their aggre-
gation number dispersion by the relations

M0
�2� =

c̆M
�2�

c̆1

, M1
�2� =

c̆M
�2�

c̆1

n̆M
�2�, M2

�2� =
c̆M

�2�

c̆1

��n̆M
�2��2 + ��n̆M

�2��2� .

�35�

The time-dependent quantities �Mk
�2� �k=0,1 ,2 , . . .� de-

scribe the deviations of the moments of nonequilibrium dis-
tribution cn from their quasi-equilibrium values Mk

�2�. Substi-
tuting Eqs. �33� and �34� into Eq. �32�, we get

d

dt
�Mk

�2� = − k
j̆M
�2�

n̆M
�2��� 1

�n̆M
�2� − �1�t���Mk

�2� − k�Mk−1
�2�

− �1�t�Mk
�2�� . �36�

Equation �36� at different k=0,1 ,2 , . . . forms a system of
coupled hierarchical equations which can be completed by
adding the balance equation of surfactant matter in the solu-
tion. This procedure will be considered in Secs. VI and VII.

V. SOLUTION OF THE MOMENT EQUATIONS
FOR SHORT MICELLES

We will study in this section a special case when the
aggregation work �see Fig. 1� has only one potential well
which corresponds to the short micelles. This case is realized
at total surfactant concentrations in solution between cmc

and cmc2, when the work W̆n of micelle formation tends to
infinity at n� n̆s

�1� and lengthy micelles are absent.
As we already noticed, Eq. �22� represents a system of

coupled equations at different k=0,1 ,2 , . . .. If we knew �1�t�,
the system can be easily solved step by step from lower- to
higher-order moments �Mk

�1�. In order to find �1�t�, we may
use the material balance equation for surfactant in the solu-
tion in the form

c1�t� + 	
micelles
short

ncn�t�dn = c , �37�

where c is the total surfactant concentration. Using Eq. �6�
and taking into account that Eq. �37� is valid also in the
quasi-equilibrium state, we can rewrite Eq. �37� in the fol-
lowing form:

�1�t� +
1

c̆1
	

micelles
short

nc̆n�n�t�dn = 0. �38�

Recalling the definition �20� �M1
�1�, we finally get from Eq.

�38� an important relation,

�1�t� = − �M1
�1�. �39�

Let us now turn back to system �22�. Setting k=0 in Eq.
�22�, we have

d

dt
�M0

�1� = 0.

Thus �M0
�1� is constant in time �on the stage of fast relax-

ation�. Because in view of Eq. �20�, �M0
�1� is related to

change in total concentration of short micelles and this con-
centration does not change in fast relaxation, we conclude
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�M0
�1��t� = 0. �40�

Setting k=1,2 , . . . in Eq. �22� and using Eqs. �39� and �40�,
we can find first, second, and higher moments �Mk

�1��t�. As a
result, we get

d

dt
�M1

�1� = − j̆M
�1�� c̆M

�1�

c̆1

+
1

��n̆M
�1��2��M1

�1�, �41�

d

dt
�M2

�1� = − 2 j̆M
�1�
 �M2

�1�

��n̆M
�1��2

+ n̆M
�1�� c̆M

�1�

c̆1

−
1

��n̆M
�1��2��M1

�1� + ��M1
�1��2� ,

�42�

the equations for higher moments are similar to Eq. �42�. All
the equations at k=2, . . . turn to be linear but inhomoge-
neous. Because only the behavior of average aggregation
number and dispersion of micelles can be observable in ex-
periment, we will not consider the details of the time depen-
dence of higher moments.

Solving Eqs. �41� and �42� yields

�M1
�1��t� = C1

�1� exp
− j̆M
�1�� c̆M

�1�

c̆1

+
1

��n̆M
�1��2�t� , �43�

�M2
�1��t� = C2

�1� exp�−
2 j̆M

�1�t

��n̆M
�1��2� + 2n̆M

�1��M1
�1��t�

+
c̆1

c̆M
�1� ��M1

�1��t��2, �44�

where integration constants C1
�1� and C2

�1� can be determined
with the help of initial conditions for �M1

�1��0� and
�M2

�1��0�. The laws of time dependence given by Eqs. �43�
and �44� are pure exponential, and the characteristic times for
fast relaxation of short micelles are

t1
�1� = � j̆M

�1�� c̆M
�1�

c̆1

+
1

��n̆M
�1��2��−1

, �45�

t2
�1� = � 2 j̆M

�1�

��n̆M
�1��2�−1

, t2�
�1� = �2 j̆M

�1�� c̆M
�1�

c̆1

+
1

��n̆M
�1��2��−1

.

�46�

Comparing these times to the times from Refs. 1, 22, and 23
for nonionic spherical micelles, we see that times t1

�1� and t2
�1�

are the same in the linear and nonlinear theories, but time
t2�

�1� appears only in the nonlinear theory. As follows from
Eqs. �22�, �39�, �43�, and �44�, any moment �Mk

�1��t� �k
=1,2 , . . .� can be represented as a finite sum of exponentials.

Let us introduce the central moments for short micelles,

M̄k
�1��t� =

1

c̆1
	

micelles
short

�n − nM
�1��t��kcn�t�dn, k = 0,1,2, . . . ,

�47�

where nM
�1��t� is the current value of the average aggregation

number in a short micelle. It is clear that M̄0
�1��t�=M0

�1�

= c̆M
�1� / c̆1 and M̄1

�1��t�
0. In view of definitions �19� and �20�
we can write

nM
�1��t� =

M1
�1� + �M1

�1��t�
M0

�1� + �M0
�1��t�

. �48�

Taking into account Eqs. �21�, �39�, and �40�, we get

nM
�1��t� = n̆M

�1� −
c̆1

c̆M
�1��1�t� , �49�

Repeating the procedure of reducing the kinetic Eq. �8�
to a set of evolution equations for central moments �47� at
k=1,2 ,3 ,4 yields

d

dt
�1�t� = −

j̆M
�1�

��n̆M
�1��2�1 +

c̆M
�1�

c̆1

��n̆M
�1��2��1�t� , �50�

d

dt
M̄2

�1��t� = −
2 j̆M

�1�

��n̆M
�1��2�M̄2

�1��t� −
c̆M

�1�

c̆1

��n̆M
�1��2� , �51�

d

dt
M̄3

�1��t� = −
3 j̆M

�1�

��n̆M
�1��2 M̄3

�1��t� , �52�

d

dt
M̄4

�1��t� = −
4 j̆M

�1�

��n̆M
�1��2 �M̄4

�1��t� − 3��n̆M
�1��2M̄2

�1��t�� . �53�

In view of Eq. �39�, Eq. �50� coincides with Eq. �41�. Other
Eqs. �51�–�53� for central moments are equivalent to that for
the moments defined according to Eqs. �19� and �20�, but are
much simpler and convenient in the treatment of evolution of
the potential well profile. Using the central moments allows
us to exclude the effects of displacement of the well as whole
in the aggregation axes. It is clearly seen, for example, from
Eqs. �51� and �52� describing changing in time of the distri-
bution dispersion and asymmetry.

VI. SOLUTION OF THE MOMENT EQUATIONS
FOR LENGTHY MICELLES

We will study in this section another special case when
the aggregation work �see Fig. 1� has no first minimum for
short micelles at all. There are lengthy micelles only in the
surfactant solution in this case.

The material balance equation for surfactant in solution
in the special case considered here has the form

c1�t� + 	
micelles
lengthy

ncn�t�dn = c , �54�

where c, as in Sec. V, is the total surfactant concentration. As
well as in the Sec. IV, we neglect the small term correspond-
ing to the interval �n̆c

�2� , n̆0� in Fig. 1. Using Eq. �6� and
taking into account that Eq. �54� is valid also in the quasi-
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equilibrium state of lengthy micelles, we can rewrite Eq. �54�
as

�1�t� +
1

c̆1
	

micelles
lengthy

nc̆n�n�t�dn = 0. �55�

Recalling the definition �34� of �M1
�2�, we finally get from

Eq. �55� an important relation,

�1�t� = − �M1
�2�. �56�

Let us turn to the system of coupled equations given by
Eq. �36�. Setting k=0 in Eq. �36�, we have

d

dt
�M0

�2� = 0.

Thus �M0
�2� is constant in time. Because in view of Eq. �34�,

�M0
�2� is referred to change in total concentration of lengthy

micelles and this concentration does not change in fast relax-
ation, we conclude

�M0
�2��t� = 0. �57�

Setting k=1,2 , . . . in Eq. �36� and using Eqs. �56� and �57�,
we can find first, second, and higher moments �Mk

�2��t�. As a
result, we get

d

dt
�M1

�2� = −
j̆M
�2�

n̆M
�2��� c̆M

�2�

c̆1

n̆M
�2� +

1

�n̆M
�2���M1

�2� + ��M1
�2��2� ,

�58�

d

dt
�M2

�2� = − 2
j̆M
�2�

n̆M
�2����M1

�2� +
1

�n̆M
�2���M2

�2�

+ � c̆M
�2�

c̆1

��n̆M
�2��2 + ��n̆M

�2��2� − 2��M1
�2�� , �59�

the equations for higher moments are similar to Eq. �59�.
Equation �58� for �M1

�2� is nonlinear, all the equations for
�Mk

�2� at k
2 turn to be inhomogeneous linear equations
with variable coefficients. Because only the behavior of av-
erage aggregation number and dispersion of micelles can be
observable in experiment, and these characteristics, as fol-
lows from Eqs. �58� and �59�, do not depend on higher mo-
ments, we will not consider the details of the time depen-
dence of higher moments.

The variables in the differential Eq. �58� can be easily
separated. Note that there is a singular point

�M1,sp
�2� = − � c̆M

�2�

c̆1

n̆M
�2� +

1

�n̆M
�2�� �60�

in this equation. Nevertheless, this point does not cause a
problem. Indeed, the total moment M1

�2��t�=M1
�2�+�M1

�2��t�
�as well as any other full moment Mk

�2��t�, k=0,1 ,2 , . . .� at
any moment of time should be positive. In view of Eqs. �35�
and �60�, it means that �M1

�2��t��−�c̆M
�2� / c̆1�n̆M

�2���M1,sp
�2� at

any t.
Solving Eqs. �58� and �59� yields

�M1
�2��t� =

n̆M
�2�� c̆M

�2�

c̆1

+
1

n̆M
�2��n̆M

�2��
C1

�2� exp� j̆M
�2�� c̆M

�2�

c̆1

+
1

n̆M
�2��n̆M

�2��t� − 1

. �61�

�M2
�2��t� = C2

�2���M1
�2��t�exp� j̆M

�2� c̆M
�2�

c̆1

t��2

+

c̆M
�2�

c̆1

��n̆M
�2��2 + ��n̆M

�2��2� − 2

c̆M
�2�

c̆1
� c̆M

�2�

c̆1

−
1

n̆M
�2��n̆M

�2���n̆M
�2��2

���M1
�2��t� + 2

c̆M
�2�

c̆1

n̆M
�2���M1

�2��t� , �62�

where integration constants C1
�2� and C2

�2� can be determined
with the help of initial conditions for �M1

�2��0� and
�M2

�2��0�. The laws of time dependence given by Eqs. �61�
and �62� become pure exponential as t→	, and the charac-
teristic times for fast relaxation of lengthy micelles are

t1
�2� = � j̆M

�2�� c̆M
�2�

c̆1

+
1

n̆M
�2��n̆M

�2���−1

, �63�

t2
�2� = � 2 j̆M

�2�

n̆M
�2��n̆M

�2��−1

, t2�
�2� = �2 j̆M

�2�� c̆M
�2�

c̆1

+
1

n̆M
�2��n̆M

�2���−1

.

�64�

Comparing these times to the characteristic times of linear
theory from Ref. 8 for cylindrical micelles, we see that times
t1
�2� and t2

�2� are present in both linear and nonlinear theories at
n̆M

�2���n̆M
�2�, but time t2�

�2� appears only in the nonlinear
theory. By contrast to the case of short micelles, none of
moments �Mk

�2��t� �k=1,2 , . . .� can be represented as a finite
sum of exponentials. Because Eqs. �61� and �62� are more
complicated than Eqs. �43� and �44�, passing to the central
moments for lengthy micelles does not simplify the relax-
ation equations.

VII. SOLUTION OF THE MOMENT EQUATIONS FOR
COEXISTING SHORT AND LENGTHY MICELLES

Now we are ready to study a more complex case when
short and lengthy micelles coexist in the surfactant solution.
As we have seen, Eqs. �22� and �36� form two independent
sets of nonuniform first-order differential equations for mo-
ments �Mk

�1��t� or �Mk
�2��t� of the aggregate distribution

function. These sets can be easily solved for any moment
starting from k=2 if we know �1�t� and all previous moments
�Mi

�1��t� and �Mi
�2��t� �i=0,1 , . . . ,k−1�. Thus we see

that it is sufficient to find �M0
�1��t�, �M1

�1��t�, �M0
�2��t�, and

�M1
�2��t�.
It is evident that the material balance equation for sur-

factant in solution with coexisting short and lengthy micelles
can be written in the form
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c1�t� + 	
micelles
short

ncn�t�dn + 	
micelles
lengthy

ncn�t�dn = c , �65�

where c is �as before� the total surfactant concentration. Like
in the Section IV, we neglect in Eq. �65� a small term that
corresponds to the interval �n̆c

�2� , n̆0�. Note that this approxi-
mation imposes additional conditions on the depths and
widths of the first and the second potential wells and the
heights of the first and the second potential peaks of the
aggregation work at surfactant concentrations above the
cmc2. These conditions require that the first well should con-
tain a considerable number of spherical micelles, while the
second well should be insignificant, and the difference be-
tween the heights of the potential peaks and potential well
should be at least several kBT. Using Eq. �6� and taking into
account that Eq. �65� is valid for the quasi-equilibrium states
also, we can rewrite Eq. �65� in the following form:

�1�t� +
1

c̆1
	

micelles
short

nc̆n�n�t�dn +
1

c̆1
	

micelles
lengthy

nc̆n�n�t�dn = 0.

�66�

Recalling definitions �20� and �34� of �M1
�1� and �M1

�2�, we
finally get from Eq. �66�

�1�t� = − �M1
�1� − �M1

�2�. �67�

Following Eqs. �22� and �36�, we have the same equa-
tions and solutions for the moments �M0

�1��t� and �M0
�2��t� as

in Secs. V and VI,

d

dt
�M0

�1� = 0,
d

dt
�M0

�2� = 0,

�68�
�M0

�1��t� = 0, �M0
�2��t� = 0.

Substituting k=1 into Eqs. �22� and �36� and using Eqs. �67�
and �68� leads to two coupled equations for the moments
�M1

�1��t� and �M1
�2��t�,

d

dt
�M1

�1� = − j̆M
�1��� c̆M

�1�

c̆1

+
1

��n̆M
�1��2��M1

�1� +
c̆M

�1�

c̆1

�M1
�2�� ,

�69�

d

dt
�M1

�2� = −
j̆M
�2�

n̆M
�2��� c̆M

�2�

c̆1

n̆M
�2� +

1

�n̆M
�2���M1

�2� + ��M1
�2��2

+ � c̆M
�2�

c̆1

n̆M
�2� + �M1

�2���M1
�1�� . �70�

At a first glance, it seems that Eqs. �69� and �70� can be
solved analytically in the case when the number of surfactant
molecules in short micelles is much less than that in lengthy
micelles. It sounds like one can neglect the last term in Eq.
�69� in this case. However, the numerical analysis shows that
such approach may be erroneous because the total number of
micelles is more important for changing monomer concen-
tration in fast relaxation than the total number of surfactant
molecules in the micelles.

In order to demonstrate the specific roles of short and
lengthy micelles in solutions above the cmc2, we have solved
Eqs. �69� and �70� numerically, considering short micelles as
spherical and lengthy micelles as cylindrical. The results are
shown in Figs. 2–7.

Although there are two rates j̆M
�1� and j̆M

�2� in Eqs. �69� and
�70�, we represent time dependences in Figs. 2–7 using only

one dimensionless time t�= tj�M
�1�. The aggregate capture rates

j̆M
�1� �for spherical micelles� and j̆M

�2� �for cylindrical micelles�
are linked by relation

j̆M
�2� �

2

3
j̆M
�1� n̆M

�2�

n̆M
�1�

Rs
�1�

Rcyl
, �71�
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FIG. 2. Relative deviation �1 of monomer concentration c1 from its
quasi-equilibrium value c̆1 �near cmc2� as a function of dimensionless
time t�= t j̆M
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FIG. 3. Moment �M1
�1� as a function of dimensionless time t�= t j̆M

�1� in the
presence and absence of cylindrical micelles �near cmc2�.
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where Rs
�1� is the radius of spherical micelles at n= n̆M

�1� and
Rcyl is the radius of the micelle cylindrical body. Since the
factor �2 /3��Rs

�1� /Rcyl� lies in the interval of 0.3–1.0, we may

use a simplified relation j̆M
�2�= j̆M

�1��n̆M
�2� / n̆M

�1�� in computations.
Parameters in Eqs. �69� and �70� were taken owing to the

following arguments. As was shown in Ref. 10, the monomer
concentration and the total concentration of spherical mi-
celles become “frozen” above cmc2. Indeed, they slightly
change with increasing the total surfactant concentration
above cmc2 but not significantly. As a result, the correspond-
ing change in the values of n̆M

�1� and �n̆M
�1� should be small.

One may expect that corresponding change in large values of
n̆M

�2� and �n̆M
�2� will be relatively small as well. Thus we may

choose for fast relaxation near cmc2 �when the total number
of cylindrical micelles is small� and markedly above cmc2

�when the cylindrical micelles accumulate almost all the sur-
factants� the next values

n̆M
�1� = 100, �n̆M

�1� = 15, n̆M
�2� = 1000,

�n̆M
�2� = 850, c̆M

�1� = 0.01c̆1,

�72�
c̆M

�2� = 0.0001c̆1�near cmc2�,

c̆M
�2� = 0.01c̆1�markedly above cmc2� .

Indeed, this values are generally consistent with the plot on
Fig. 1 because �n̆M

�1� / n̆M
�1��1 �this is compatible with the

Gauss distributions of spherical micelles�, n̆M
�2���n̆M

�2� �this is
compatible with exponential size distribution of cylindrical
micelles�, n̆M

�1�c̆M
�1�= c̆1 �it means that total surfactant concen-

tration is above cmc1�, and c̆M
�2�n̆M

�2�=0.1 �it means that total
surfactant concentration is slightly above cmc2�.

Figure 2 illustrates the behavior of surfactant monomer
concentration at total concentration near cmc2. The corre-
sponding curves are denoted as “spheres and cylinders.” For
comparison, we added here �as well as in subsequent figures�
also two particular cases with n̆M

�1�=0 �“cylinders only”� and
with n̆M

�2�=0 �“spheres only”�, other parameters were kept the
same. First of all, we see that relaxation of monomer con-
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centration is monotonous when only one modification of mi-
celles �spherical or cylindrical� is present in the solution.
Note that the monomer relaxation curves for solution with
cylindrical micelles depend on the sign of initial deviation
while there is no such dependence for solution with spherical
micelles. For solution with coexisting spherical and cylindri-
cal micelles, the relaxation curves demonstrate nonmonoto-
nous behavior and even change in the deviation sign.

Figures 3 and 4 allow us to compare the fast relaxation
curves for the average aggregation number in spherical and
cylindrical micelles at parameters corresponding to the total
concentration near cmc2 from Eq. �72�. We see that relax-
ation of spherical micelles is markedly slowed down in the
presence of cylindrical micelles. At the beginning of relax-
ation, the effect is almost invisible, but later it becomes sig-
nificant. The effect of spherical micelles on relaxation of
cylindrical micelles is different. At the beginning, the aver-
age aggregation number of cylindrical micelles rapidly in-
creases in amplitude and changes its sign, but later it be-
comes flat descending �similar to the behavior without
spherical micelles�.

Figures 5–7 illustrate the influence of increasing the total
surfactant concentration in solution markedly above cmc2.
As we can see, the general behavior of the curves is similar
to the case of lower total concentration near cmc2. Neverthe-
less the effect of cylindrical micelles on relaxation of spheri-
cal micelles becomes more pronounced due to increase in
cylindrical cmc, but we still cannot neglect the backward
effect of spherical micelles on cylindrical micelles. It still
brings changing the sign of deviation of average aggregation
number of cylindrical micelles due to a large number of
spherical micelles. This fact reveals the reasons why the con-
dition of smallness of total amount of surfactant in spherical
micelles is not sufficient to neglect their effects.

VIII. CONCLUSION

As we have seen in Secs. I–VII, the proposed approach
allows one to find the time dependence of any moment of the
distribution function of molecular aggregates in the micellar
solution on the stage of fast relaxation. This approach is
based on the specific model assumptions that �i� short mi-
celles satisfy a Gaussian length distribution, �ii� there is a
narrow range of intermediate aggregates lying between short
and lengthy micelles which can be neglected in comparison
with the major part of lengthy micelles, �iii� lengthy micelles
satisfy an exponential length distribution, and �iv� the prob-
ability of the capture of free surfactant monomers by the
lengthy micelles is proportional to the aggregation number of
these micelles.

Equations �22� and �39� together with formulas �43� and
�44� determine the time behavior in the case of existence of
short micelles only, Eqs. �36� and �56� together with formu-
las �61� and �62� determine the time behavior in the case of
existence of lengthy micelles only, and Eqs. �22�, �36�, and
�67�–�70� determine the time behavior of moments for coex-

isting short and lengthy micelles. These results, for the first
time, take into account the influence of initial conditions at
fast relaxation.

The higher-order moments of the distribution function of
molecular aggregates depend on the lower-order moments
but have also their own contributions. Thus there are specific
times of fast relaxation for every higher-order moment. This
behavior is similar to that predicted by the linear kinetic
theory in Refs. 1, 2, 4, 5, 8, and 9, but the set of specific
times in the nonlinear theory is richer.

It has been shown that there is a strong interplay be-
tween coexisting short and lengthy micelles even in the case
when the total number of surfactant molecules aggregated in
short micelles is small in comparison with that in lengthy
micelles.
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