
17 Nonlinear Fast Relaxation of Coexisting

Short and Lengthy Micelles

Mikhail S. Kshevetskiy and Alexander K. Shchekin

Department of Statistical Physics, St. Petersburg State
University, Ulyanovskaya st. 1, Petrodvorets,

198 504 St. Petersburg, Russia

God does not care about our mathematical difficulties.
He integrates empirically.

Albert Einstein

Abstract

A direct way of deriving an analytic solution of nonlinear kinetic equation for fast re-
laxation of the distribution function of molecular aggregates in aggregation number in
surfactant solutions with coexisting short and lengthy micelles has been proposed. It
has been shown that the kinetic equation can be reduced to a complete set of differen-
tial evolution equations for the moments of the distribution function. The equations for
higher-order moments include the same and lower-order moments only. It allows one to
integrate these equations and establish a total time dependence of any moment of the
distribution function at the stage of fast relaxation. The separate cases when only short
(usually spherical) or only lengthy (usually cylindrical) micelles are present have also
been considered. The results are compared with the results of linear kinetic theory of
micellar fast relaxation.

17.1 Introduction

Speaking on fast relaxation, we assume usually the relaxation process in sur-
factant solution above the critical micelle concentration (cmc) with a time scale
much smaller then that for total micellar relaxation. As a result of this process, the

al
Печатная машинка
in “Nucleation Theory and Applications-4”, edited by J.W.P. Schmelzer, G. Röpke and V.B. Priezzhev 
(Dubna, JINR, 2008) p. 339-357.



340 17 Relaxation of Coexisting Short and Lengthy Micelles

quasi-equilibrium distributions of subcritical premicellar aggregates and micelles
as stable molecular aggregates are established separately. The quasi-equilibrium
distributions refer to the local equilibrium state with the parameters varying in
time relatively slow. These distributions evolve at the stage of slow relaxation to
a final single equilibrium distribution.

The foundations of the theory of fast relaxation in micellar solutions were build by
Aniansson, Wall [1, 2], Kahlweit [3], Kahlweit and Teubner [4]. Initially the theory
was formulated for solutions with spherical micelles characterized by a narrow
distribution in aggregation numbers. A generalization of this theory to the case of
lengthy cylindrical micelles was proposed by Shchekin et al. [5]. Fast relaxation of
coexisting spherical and cylindrical micelles was recently studied within the same
framework in Ref. 6. The characteristic feature of the approaches from [1 - 6] is
considering only the final stage of fast relaxation where the deviations from the
quasi-equilibrium distributions are small. So one can linearize the kinetic equation
for distribution function of aggregates and use for solving a corresponding linear
equation the technique of separating variables with appropriate polynomials.

We present in this paper an approach which allows us to construct an analytic
solution of the nonlinear kinetic equation for fast relaxation. The approach works
as well as in the separate cases of existence of only short or only lengthy micelles
and in the most general case of coexisting short and lengthy micelles. The central
idea of the approach is that the kinetic equation for distribution function of
molecular aggregates in aggregation number can be reduced to a complete set
of differential evolution equations for the moments of the distribution function.
Although these equations can be nonlinear too, it is possible to integrate them
in an analytical form and establish the total time dependence of any moment of
the distribution function at the stage of fast relaxation.

17.2 Kinetic Equation of Micellization and

Quasi-equilibrium Distributions

Let us consider a micellar solution above the second critical micelle concentration
(cmc2) with coexisting short and lengthy molecular aggregates of surfactant. The
kinetic equation describing the evolution of the distribution function cn(t) of
molecular aggregates in aggregation number n in time t is the Becker-Döring
master equation which can be written as

∂cn

∂t
= − ∂

∂n
Jn , (17.1)
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17.2 Kinetic Equation of Micellization and Quasi-equilibrium Distributions 341

where

Jn = j+
n cn − j−n+1cn+1 (17.2)

is the flux of aggregates along the aggregation number axis between states n− 1
and n. Here j+

n is the number of surfactant monomers captured per unit of time
out of the solution by the aggregate with aggregation number n, j−n+1 is the
number of surfactant monomers emitted per unit of time into solution by the
aggregate with aggregation number n + 1. The rate j−n+1 is independent of the
solution state and can be determined with the help of the rate ĵ+

n at equilibrium
or quasi-equilibrium state. Denoting the quantities at the quasi-equilibrium state
with upper hat and recognising that the flux Jn turns to zero at this state, we
have

j−n+1 = ĵ+ ĉn

ĉn+1
. (17.3)

The rate j+
n is directly proportional to the surfactant monomer concentration c1,

so we can write

j+
n = ĵ+ c1

ĉ1
. (17.4)

Substituting Eqs. (17.3) and (17.4) into Eq. (17.2), we finally get

Jn = ĵ+ĉn

(
c1cn

ĉ1ĉn
− cn+1

ĉn+1

)
. (17.5)

It is more convenient to go over from the distribution cn(t) to the relative devi-
ation ξn(t) of the distribution function cn(t) from quasi-equilibrium distribution
ĉn

ξn =
cn − ĉn

ĉn
, cn = ĉn(1 + ξn) . (17.6)

Using Eq. (17.6) in Eq. (17.5) and replacing ξn+1 − ξn by ∂ξn/∂n at n � 1, we
get

Jn = ĵ+
n ĉn

(
ξ1 + ξ1ξn − ∂ξn

∂n

)
. (17.7)

Substituting Eq. (17.7) into Eq. (17.1) yields

ĉn
∂ξn

∂t
= − ∂

∂n

[
ĵ+
n ĉn

(
ξ1 + ξ1ξn − ∂ξn

∂n

)]
. (17.8)
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342 17 Relaxation of Coexisting Short and Lengthy Micelles

The non-linear term ξ1ξn on the right hand side of Eq. (17.8) was usually neglected
at assumption ξn � 1, ξ1 � 1 in the previous analysis of fast relaxation [1, 5, 6].
This assumption is satisfied at final stage of fast relaxation only. To describe the
very early stages of fast relaxation, we need to keep this term in kinetic equation
Eq. (17.8). This will be in the focus of our investigation below.

n

Wn

(1)Wc

Wc
(2)

nc(2)nc(1) n0

W0

Ws
(2)

Ws
(1)

ns(1) ns(2)

Fig. 17.1 A typical shape of the aggregation work Wn of surfactant aggregate as a function of
the aggregation number n at overall surfactant concentration in solution above the
cmc2. The upper indices (1) and (2) denote the corresponding maxima and minima
points. The lower indices s and c refer to stable and critical micelles respectively. The
index 0 indicates the beginning of linear dependence of Wn on n.

Let us turn now to analysis of the profile of the aggregation work Wn as a function
of aggregation number n. A typical plot [7, 9] of the work at surfactant concen-
tration in solution above cmc2 is shown in Fig. 17.1. There are first and second
maxima and first and second minima in the plot. The quantities corresponding
to these extrema are denoted with upper indices (1) and (2). With the help of
lower indices c and s we distinguish maxima and minima. The vicinity of first
minimum corresponds to the range of aggregation numbers where short micelles
accumulate. The lengthy micelles are located at n > n

(2)
c . It is known [7, 8] that

the behavior of the aggregation work becomes linear starting from some aggre-
gation number. We denote this number in Fig. 17.1 by n0. The behavior of the
aggregation work Wn with distinguished maxima and minima shown in Fig. 17.1
allows us to consider fast relaxation after initial disturbance separately for short
and lengthy micelles.
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17.3 Moment Equations for Short Micelles 343

17.3 Moment Equations for Short Micelles

First, we will consider fast relaxation of short micelles accumulated within the
first potential well in the work of aggregate formation in Fig. 17.1. Multiplying
both parts of Eq. (17.8) by nk, where k = 0, 1, 2, . . . and integrating the result
over the first potential well yields∫

sh-mic

nkĉn
∂ξn

∂t
dn = −

∫
sh-mic

nk ∂

∂n

[
ĵ+
n ĉn

(
ξ1 + ξ1ξn − ∂ξn

∂n

)]
dn . (17.9)

The abbreviation ”sh-mic” for the words short micelles in the lower limits to the
integrals indicates the region of integration.

Integrating the right-hand side of Eq. (17.9) by parts and using the natural con-
ditions that ξn(t) tends to zero at the boundaries of the first potential well, we
find ∫

sh-mic

nkĉn
∂ξn

∂t
dn = kξ1

∫
sh-mic

nk−1ĵ+
n ĉn(1 + ξn)dn + (17.10)

+ k

∫
sh-mic

ξn
∂

∂n

(
nk−1ĵ+

n ĉn

)
dn .

We used integration by parts twice to find the second term on the right-hand side
of Eq. (17.10). Thus we completely eliminate the derivatives of unknown function
ξn with respect to n from the equation. This will facilitate our next task.

We will assume that the potential well for short micelles and corresponding quasi-
equilibrium distribution in aggregation numbers are sufficiently narrow, so we can
use a quadratic approximation for the aggregation work Ŵn:

Ŵn = Ŵ (1)
s +

1
2

(
n− n̂

(1)
s

∆n̂
(1)
s

)2

,

(17.11)
n̂(1)

s −∆n̂(1)
s ≤ n ≤ n̂(1)

s + ∆n̂(1)
s , ∆n̂(1)

s � n̂(1)
s .

Here n̂
(1)
s is the location of the minimum in the aggregation work for short micelles

(see first potential well in Fig. 17.1) at the quasiequilibrium state,

Ŵ (1)
s ≡ Ŵn

∣∣∣
n=n̂

(1)
s

, ∆n̂(1)
s ≡

(
d2Ŵn/dn2

∣∣∣
n=n̂

(1)
s

)−1/2

. (17.12)
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344 17 Relaxation of Coexisting Short and Lengthy Micelles

According to the Boltzmann principle, the quasi-equilibrium distribution ĉn can
be written in the potential well for short micelles as

ĉn = ĉ(1)
s e

−
(
Ŵn−Ŵ

(1)
s

)
, where ĉ(1)

s ≡ ĉn|n=n̂
(1)
s

. (17.13)

In view of Eqs. (17.11) and (17.13), the quasi-equilibrium distribution of short
micelles in the first potential well has the form of the Gauss distribution:

ĉn = ĉ(1)
s exp

⎡⎣−1
2

(
n− n̂

(1)
s

∆n̂
(1)
s

)2
⎤⎦ ,

(17.14)
n̂(1)

s −∆n̂(1)
s ≤ n ≤ n̂(1)

s + ∆n̂(1)
s .

With the use of statistical definitions and Eq. (17.14), the total concentration ĉ
(1)
M

of short micelles, their average aggregation number n̂
(1)
M and dispersion ∆n̂

(1)
M of

aggregation numbers are determined at the quasi-equilibrium state as

ĉ
(1)
M ≡

∫
sh-mic

ĉndn , (17.15)

n̂
(1)
M ≡ 1

ĉ
(1)
M

∫
sh-mic

nĉn dn = n̂(1)
s , (17.16)

(
∆n̂

(1)
M

)2 ≡ 1

ĉ
(1)
M

∫
sh-mic

(
n− n̂

(1)
M

)2
ĉn dn =

(
∆n̂(1)

s

)2
. (17.17)

It is clear from Eq. (17.14) and the definitions, Eqs. (17.15)–(17.17), that the
location of the minimum of the aggregation work for the short micelles and the
quantity ∆n̂

(1)
s coincide with the average aggregation number and the aggregation

number dispersion, respectively.

Taking into account Eq. (17.14) and the strong inequality ∆n̂
(1)
s � n̂

(1)
s , which

characterizes the narrowness of the first potential well, we can use the approxi-
mation

ĵ+
n � ĵ

(1)
M ≡ ĵ+

n

∣∣∣
n=n̂

(1)
s

, n̂(1)
s −∆n̂(1)

s ≤ n ≤ n̂(1)
s + ∆n̂(1)

s (17.18)
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17.3 Moment Equations for Short Micelles 345

in the integrand of Eq. (17.10). Substituting Eqs. (17.14) and (17.11) into
Eq. (17.10) and taking into account Eqs. (17.16)–(17.18), we get

∫
sh-mic

nkĉn
∂ξn

∂t
dn = kĵ

(1)
M

⎡⎢⎣ξ1

∫
sh-mic

nk−1ĉn(1 + ξn) dn + (17.19)

+ (k − 1)
∫

sh-mic

nk−2ĉnξn dn− 1(
∆n̂

(1)
M

)2

∫
sh-mic

nk−1ĉnξn

(
n− n̂

(1)
M

)
dn

⎤⎥⎦ .

Let us now define

M
(1)
k ≡ 1

ĉ1

∫
sh-mic

nkĉn dn , (17.20)

∆M
(1)
k (t) ≡ 1

ĉ1

∫
sh-mic

nkĉnξn(t)dn . (17.21)

It is evident that the time-independent quantities M
(1)
k are the moments of the

quasi-equilibrium distribution ĉn of short micelles.

According to the definitions Eqs. (17.15)–(17.17), we can link the moments M
(1)
k

with the total concentration of short micelles, their average aggregation number
and their aggregation number dispersion by the relations

M
(1)
0 =

ĉ
(1)
M

ĉ1
, M

(1)
1 =

ĉ
(1)
M

ĉ1
n̂

(1)
M ,

(17.22)

M
(1)
2 =

ĉ
(1)
M

ĉ1

[(
n̂

(1)
M

)2
+
(
∆n̂

(1)
M

)2
]

.

The time-dependent quantities ∆M
(1)
k (k = 0, 1, 2, . . .) describe the deviations

of the moments of non-equilibrium distribution cn from their quasi-equilibrium
values M

(1)
k .
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Substituting Eqs. (17.20) and (17.21) into Eq. (17.19), we get

d

dt
∆M

(1)
k = −kĵ

(1)
M

⎡⎢⎣ ∆M
(1)
k(

∆n̂
(1)
M

)2 −

⎛⎜⎝ n̂
(1)
M(

∆n̂
(1)
M

)2 + ξ1(t)

⎞⎟⎠∆M
(1)
k−1− (17.23)

− (k − 1) ∆M
(1)
k−2 − ξ1(t)M

(1)
k−1

⎤⎥⎦ .

Eqs. (17.23) at different k = 0, 1, 2, . . . form a system of linked equations which
can be completed with the help of balance equation of surfactant matter in the
solution.

17.4 Moment Equations for Lengthy Micelles

Now we will consider fast relaxation of lengthy micelles in the interval [n(2)
c ,∞]

of aggregation numbers in Fig. 17.1. According to previous theoretical and exper-
imental data [7 - 10], we assume that the transition zone from short to lengthy
micelles lies in the interval [n(2)

c , n̂0] and the aggregation work Ŵn becomes lin-
ear starting from n = n̂0. Multiplying both parts of Eq. (17.8) by nk, where
k = 0, 1, 2, . . . and integrating the result over the interval n > n̂0 (linear micelles
region) yields∫

lin-mic

nkĉn
∂ξn

∂t
dn = −

∫
lin-mic

nk ∂

∂n

[
ĵ+
n ĉn

(
ξ1(1 + ξn)− ∂ξn

∂n

)]
dn . (17.24)

The abbreviation ”lin-mic” for the words linear micelles in the lower limits to
the integrals indicates the region of integration.

Similarly to the case of short micelles, we can integrate the right-hand side of
Eq. (17.24) and use the boundary conditions. The condition at n → ∞ requires
that ξn(t) tends to zero, but ξn(t) is nonzero at n = n̂0. It means that an addi-
tional term remains in the equations, but we can neglect this term because other
terms are much larger (the interval [n(2)

c , n̂0] is much shorter than the linear
micelles region). Thus, integrating by parts twice, we can write∫

lin-mic

nk ĉn
∂ξn

∂t
dn = kξ1

∫
lin-mic

nk−1ĵ+
n ĉn(1 + ξn)dn +
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17.4 Moment Equations for Lengthy Micelles 347

(17.25)

+ k

∫
lin-mic

ξn
∂

∂n

(
nk−1ĵ+

n ĉn

)
dn .

The linearity of the aggregation work Ŵn as a function of aggregation number at
n > n̂0 can be expressed as

Ŵn = Ŵn̂0
+

n− n̂0

∆n̂l
, n ≥ n̂0 , (17.26)

where the notations

Ŵn̂0
≡ Ŵn

∣∣∣
n=n̂0

, ∆n̂l ≡
(

dŴn/dn
∣∣∣
n=n̂0

)−1

(17.27)

have been introduced. The physical meaning of the quantity ∆n̂l we will clarify
below.

According to the Boltzmann principle, the quasi-equilibrium distribution ĉn can
be written at n > n̂0 as

ĉn = ĉn̂0
exp
{
−
(
Ŵn − Ŵn̂0

)}
, (17.28)

where ĉn̂0
≡ ĉn|n=n̂0

. In view of Eqs. (17.26) and (17.28), we have a pure expo-
nential law for the dependence of quasi-equilibrium distribution on aggregation
number n:

ĉn = ĉn̂0
exp
[
−n− n̂0

∆n̂l

]
, n > n̂0 . (17.29)

With use of the statistical definitions and Eq. (17.29), the total concentration ĉ
(2)
M

of lengthy micelles, their average aggregation number n̂
(2)
M and dispersion ∆n̂

(2)
M

of aggregation numbers are determined at the quasi-equilibrium state as

ĉ
(2)
M ≡

∫
lin-mic

ĉn dn , (17.30)

n̂
(2)
M ≡ 1

ĉ
(2)
M

∫
lin-mic

nĉn dn = n̂0 + ∆n̂l , (17.31)
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(
∆n̂

(2)
M

)2 ≡ 1

ĉ
(2)
M

∫
lin-mic

(
n− n̂

(2)
M

)2
ĉn dn = (∆n̂l)

2 . (17.32)

As follows from Eq. (17.32), the quantity ∆n̂l coincides with the aggregation
number dispersion. It should be noted that ∆n̂l may be much larger then n̂0 for
the lengthy micelles.

Taking into account the definition of ĵ+
n and the linearity of micelle length in the

aggregate number, we can write

ĵ+
n = ĵ

(2)
M

n

n̂
(2)
M

, n ≥ n̂0 , (17.33)

where ĵ
(2)
M = ĵ+

n

∣∣∣
n=n̂

(2)
M

. Substituting Eqs. (17.29) and (17.33) into Eq. (17.25)

and taking into account Eq. (17.32) yields

∫
lin-mic

nkĉn
∂ξn

∂t
dn = k

ĵ
(2)
M

n̂
(2)
M

⎡⎢⎣ξ1

∫
lin-mic

nkĉn(1 + ξn) dn+ (17.34)

+k

∫
lin-mic

nk−1ĉnξn dn− 1

∆n̂
(2)
M

∫
lin-mic

nkĉnξn dn

⎤⎥⎦ .

Let us now define

M
(2)
k ≡ 1

ĉ1

∫
lin-mic

nkĉn dn , (17.35)

∆M
(2)
k (t) ≡ 1

ĉ1

∫
lin-mic

nkĉnξn(t) dn . (17.36)

It is evident that time-independent quantities M
(2)
k are the moments of the quasi-

equilibrium distribution ĉn of lengthy micelles.
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According to definitions Eqs. (17.30)–(17.32), we can link the moments M
(2)
k with

the total concentration of linear micelles, their average aggregation number and
their aggregation number dispersion by the relations

M
(2)
0 =

ĉ
(2)
M

ĉ1
, M

(2)
1 =

ĉ
(2)
M

ĉ1
n̂

(2)
M ,

(17.37)

M
(2)
2 =

ĉ
(2)
M

ĉ1

[(
n̂

(2)
M

)2
+
(
∆n̂

(2)
M

)2
]

.

The time-dependent quantities ∆M
(2)
k (k = 0, 1, 2, . . .) describe the deviations

of the moments of non-equilibrium distribution cn from their quasi-equilibrium
values M

(2)
k .

Substituting Eqs. (17.35) and (17.36) into Eq. (17.34), we get

d∆M
(2)
k

dt
= −k

ĵ
(2)
M

n̂
(2)
M

[(
1

∆n̂
(2)
M

− ξ1(t)

)
∆M

(2)
k − k∆M

(2)
k−1 − ξ1(t) M

(2)
k

]
. (17.38)

Equations (17.38) at different k = 0, 1, 2, . . . form a system of linked equations
which can be completed with the help of the balance equation of surfactant matter
in the solution.

17.5 Solution of the Moment Equations for the Short

Micelles

We will study in this section a special case, when the aggregation work (see
Fig. 17.1) has only one minimum which corresponds to the short micelles. This
case realizes at overall surfactant concentrations in solution between cmc and
cmc2, when the work Ŵn of micelles formation tends to infinity at n > n̂

(1)
s and

the lengthy micelles are not present.

As we already noticed, Eqs. (17.23) compose a system of linked equations at
different k = 0, 1, 2, . . .. If we would know ξ1(t), the system can be easily solved
step by step from lower- to higher-order moments ∆M

(1)
k . Using the balance

equation for surfactant, we can find ξ1(t). The material balance equation in the
special case considered has the form

c1(t) +
∫

sh-mic

ncn(t) dn = c , (17.39)
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350 17 Relaxation of Coexisting Short and Lengthy Micelles

where c is the total surfactant concentration. Substituting cn from Eq. (17.6) and
taking into account that Eq. (17.39) is fulfilled at quasi-equilibrium state also,
we can rewrite Eq. (17.39) in the following form

ξ1(t) +
1
ĉ1

∫
sh-mic

nĉnξn(t) dn = 0 . (17.40)

Recalling the definition Eq. (17.21) of ∆M
(1)
1 , we finally get

ξ1(t) = −∆M
(1)
1 . (17.41)

Let us now turn back to Eqs. (17.23). Setting k = 0, we have

d

dt
∆M

(1)
0 = 0 . (17.42)

Thus ∆M
(1)
0 is constant in time. Because, in view of Eq. (17.21), ∆M

(1)
0 is referred

to change of total concentration of short micelles and this concentration does not
change in fast relaxation, we conclude

∆M
(1)
0 (t) = 0 . (17.43)

Setting k = 1, 2, . . . in Eq. (17.23) and using Eqs. (17.41) and (17.43), we can
find first, second and higher moments ∆M

(1)
k (t). As a result, we get

d

dt
∆M

(1)
1 = −ĵ

(1)
M

⎡⎢⎣ ĉ
(1)
M

ĉ1
+

1(
∆n̂

(1)
M

)2

⎤⎥⎦∆M
(1)
1 , (17.44)

d

dt
∆M

(1)
2 = −2ĵ(1)

M

⎧⎪⎨⎪⎩ ∆M
(1)
2(

∆n̂
(1)
M

)2 + (17.45)

+ n̂
(1)
M

⎡⎢⎣ ĉ
(1)
M

ĉ1
− 1(

∆n̂
(1)
M

)2

⎤⎥⎦∆M
(1)
1 +

(
∆M

(1)
1

)2

⎫⎪⎬⎪⎭ ,

the equations for higher moments are similar to Eq. (17.45). All the equations at
k = 2, . . . turn to be linear but inhomogeneous. Because we are interested mainly
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17.6 Solution of the Moment Equations for the Lengthy Micelles 351

in the behavior of the average aggregation number and dispersion of micelles, we
will not consider the details of the time dependence of higher moments.

Solving Eqs. (17.44)–(17.45) yields

∆M
(1)
1 (t) = C(1)

1 exp

⎧⎪⎨⎪⎩−ĵ
(1)
M

⎡⎢⎣ ĉ
(1)
M

ĉ1
+

1(
∆n̂

(1)
M

)2

⎤⎥⎦ t

⎫⎪⎬⎪⎭ . (17.46)

∆M
(1)
2 (t) = C(1)

2 exp

⎛⎜⎝− 2ĵ(1)
M t(

∆n̂
(1)
M

)2

⎞⎟⎠+ (17.47)

+ 2n̂(1)
M ∆M

(1)
1 (t) +

ĉ1

ĉ
(1)
M

(
∆M

(1)
1 (t)

)2
,

where the integration constants C(1)
1 and C(1)

2 can be determined with the help of
initial conditions for fast relaxation. Comparing these results with [1, 11, 12], we
see the agreement of non-linear theory with the linear theory based on the Hermite
polynomial expansion. The law of time dependence of concentration of monomers
or average aggregation number given by Eq. (17.46) is purely exponential, and
the characteristic time for fast relaxation for these characteristics of the micellar
solution coincides in both theories. Contrary to the linear theory, there is an
additional term in Eq. (17.47) which is quadratic in ∆M

(1)
1 (t). This term provides

an additional characteristic time to compare with the linear theory. As we can see,
∆M

(1)
2 (t) is the sum of exponentials with different arguments, thus any moment

∆M
(1)
k (t), where k = 1, 2, . . ., can be represented as a finite sum of exponentials.

17.6 Solution of the Moment Equations for the

Lengthy Micelles

We will study in this section another special case, when the aggregation work
(see Fig. 17.1) has no first minimum for short micelles at all. There are lengthy
micelles only in the solution in this case.

As we already noticed, Eqs. (17.38) compose a system of linked equations at
different k = 0, 1, 2, . . .. If we would know ξ1(t), the system can be easily solved
step by step from lower- to higher-order moments ∆M

(2)
k . Using the material
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balance equation for surfactant, we can find ξ1(t). The material balance equation
in the special case considered has the form

c1(t) +
∫

lin-mic

ncn(t) dn = c , (17.48)

where c is the total surfactant concentration. Here we also neglect the small term
corresponding to the interval [n̂(2)

c , n̂0] in Fig. 17.1. Substituting cn from Eq. (17.6)
and taking into account that Eq. (17.48) is fulfilled at quasi-equilibrium state also,
we can rewrite Eq. (17.48) in the following form

ξ1(t) +
1
ĉ1

∫
lin-mic

nĉnξn(t) dn = 0 . (17.49)

Recalling the definition Eq. (17.36) of ∆M
(1)
1 , we finally get

ξ1(t) = −∆M
(2)
1 . (17.50)

Let us now turn back to Eqs. (17.38). Setting k = 0, we have

d

dt
∆M

(2)
0 = 0 . (17.51)

Thus ∆M
(2)
0 is constant in time. Because, in view of Eq. (17.36), ∆M

(2)
0 is referred

to the change of total concentration of lengthy micelles and this concentration
does not change in fast relaxation, we conclude

∆M
(2)
0 (t) = 0 . (17.52)

Setting k = 1, 2, . . . in Eq. (17.38) and using Eqs. (17.50) and (17.52), we can
find first, second and higher moments ∆M

(2)
k (t). As a result, we get

d

dt
∆M

(2)
1 = − ĵ

(2)
M

n̂
(2)
M

[(
ĉ
(2)
M

ĉ1
n̂

(2)
M +

1

∆n̂
(2)
M

)
∆M

(2)
1 +

(
∆M

(2)
1

)2
]

, (17.53)

d

dt
∆M

(2)
2 = −2

ĵ
(2)
M

n̂
(2)
M

[(
∆M

(2)
1 +

1

∆n̂
(2)
M

)
∆M

(2)
2 + (17.54)

+

(
ĉ
(2)
M

ĉ1

[(
n̂

(2)
M

)2
+
(
∆n̂

(2)
M

)2
]
− 2

)
∆M

(2)
1

]
,
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the equations for higher moments are similar to Eq. (17.54).

Equation (17.53) for ∆M
(2)
1 is non-linear, all the equations for ∆M

(2)
k at k ≥ 2

turn out to be linear but inhomogeneous with variable coefficients. Because we
are interested mainly in behavior of average aggregation number and dispersion
of micelles, we will not consider the details of the time dependence of higher
moments.

Solving Eqs. (17.53)–(17.54) yields

∆M
(2)
1 (t) =

n̂
(2)
M

[
ĉ
(2)
M

ĉ1
+

1

n̂
(2)
M ∆n̂

(2)
M

]

C(2)
1 exp

(
ĵ
(2)
M

[
ĉ
(2)
M

ĉ1
+

1

n̂
(2)
M ∆n̂

(2)
M

]
t

)
− 1

. (17.55)

∆M
(2)
2 (t) = C(2)

2

[
∆M

(2)
1 (t) exp

(
ĵ
(2)
M

ĉ
(2)
M

ĉ1
t

)]2

+ (17.56)

+

ĉ
(2)
M

ĉ1

[(
n̂

(2)
M

)2
+
(
∆n̂

(2)
M

)2
]
− 2

ĉ
(2)
M

ĉ1

[
ĉ
(2)
M

ĉ1
− 1

n̂
(2)
M ∆n̂

(2)
M

](
n̂

(2)
M

)2

(
∆M

(2)
1 (t) + 2

ĉ
(2)
M

ĉ1
n̂

(2)
M

)
∆M

(2)
1 (t) ,

where the integration constants C(2)
1 and C(2)

2 can be determined with the help
of the initial conditions for fast relaxation.

Let us compare Eqs. (17.55) and (17.56) with the results of the linear theory
based on the Laguerre polynomial expansion [5]. The law of time dependence of
concentration of monomers or average aggregation number given by Eq. (17.55)
becomes purely exponential as in the linear theory at t → ∞ only. The charac-
teristic time for fast relaxation for these characteristics of the micellar solution
coincides in both theories at t→∞.

Contrary to the linear theory, there is an additional term in Eq. (17.56), which
is quadratic in ∆M

(2)
1 (t). This term provides an additional characteristic time to

compare with the linear theory. Unlike the short micelles case, the expressions
for ∆M

(2)
1 (t) and ∆M

(2)
2 (t) are more complicated. As a consequence, none of the

moments ∆M
(2)
k (t), where k = 1, 2, . . ., can be represented as a finite sum of

exponentials.
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17.7 Solution of the Moment Equations for
Coexisting Short and Lengthy Micelles

Now we are ready to study more complex case, when the short and lengthy mi-
celles coexist. As we could see, Eqs. (17.23) and (17.38) compose two independent
sets of non-uniform differential equations for moments ∆M

(1)
k or ∆M

(2)
k of the

distribution function. These sets can be easily solved for any moment starting
from k = 2, if we know ξ1(t) and all previous moments ∆M

(1)
i and ∆M

(2)
i , where

i = 0, 1, . . . , k− 1. Let us show that it is sufficient to know ∆M
(1,2)
0 and ∆M

(1,2)
1 .

It follows from the material balance equation that

c1(t) +
∫

sh-mic

ncn(t) dn +
∫

lin-mic

ncn(t) dn = c , (17.57)

where c is as usually the overall surfactant concentration. Like in the previous
section, we neglect here a small term that corresponds to the interval [n̂(2)

c , n̂0].
Unlike the previous section, this neglection imposes an additional condition on
the depths and widths of the first and the second minima of the aggregation
work. Substituting cn from Eq. (17.6) and taking into account that Eq. (17.57)
is fulfilled at quasi-equilibrium states also, we can rewrite Eq. (17.57) in the
following form

ξ1(t) +
1
ĉ1

∫
sh-mic

nĉnξn(t) dn +
1
ĉ1

∫
lin-mic

nĉnξn(t) dn = 0 . (17.58)

Recalling the definition Eqs. (17.21) and (17.36) of ∆M
(1)
1 and ∆M

(2)
1 , we finally

get

ξ1(t) = −∆M
(1)
1 −∆M

(2)
1 . (17.59)

Now we can solve Eqs. (17.23) and (17.38) for the zero moments. Similarly to the
previous cases, we get

d

dt
∆M

(1)
0 = 0 ,

d

dt
∆M

(2)
0 = 0 , (17.60)

∆M
(1)
0 (t) = 0 , ∆M

(2)
0 (t) = 0 . (17.61)
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Substituting k = 1 into Eqs. (17.23) and (17.38) and using Eqs. (17.59) and
(17.61) yields equations for the first moments

d

dt
∆M

(1)
1 = −ĵ

(1)
M

⎡⎢⎣
⎛⎜⎝ ĉ

(1)
M

ĉ1
+

1(
∆n̂

(1)
M

)2

⎞⎟⎠∆M
(1)
1 +

ĉ
(1)
M

ĉ1
∆M

(2)
1

⎤⎥⎦ , (17.62)

d

dt
∆M

(2)
1 = − ĵ

(2)
M

n̂
(2)
M

[(
ĉ
(1)
M

ĉ1
n̂

(2)
M +

1

∆n̂
(2)
M

)
∆M

(2)
1 +

(
∆M

(2)
1

)2
+

(17.63)

+

(
ĉ
(1)
M

ĉ1
n̂

(2)
M + ∆M

(2)
1

)
∆M

(1)
1

]
.

Equations (17.62) and (17.63) form a coupled set which can be easily solved
numerically. Taking into account that the effect of short micelles on lengthy mi-
celles is rather small, we can neglect the last term in Eq. (17.63). Thus the exact
solution for ∆M

(1)
1 and approximate solution for ∆M

(2)
1 can be writen as

∆M
(1)
1 (t) = C(1′)

1 exp

{
−ĵ

(1)
M

( ĉ
(1)
M

ĉ1
+

1

(∆n̂
(1)
M )2

)
t

}
−

(17.64)

− ĵ
(1)
M

ĉ
(1)
M

ĉ1

t∫
0

∆M
(2)
1 (t′) exp

{
−ĵ

(1)
M

( ĉ
(1)
M

ĉ1
+

1

(∆n̂
(1)
M )2

)
(t− t′)

}
dt′ ,

∆M
(2)
1 (t) ≈

n̂
(2)
M

[
ĉ
(2)
M

ĉ1
+

1

n̂
(2)
M ∆n̂

(2)
M

]

C(2′)
1 exp

(
ĵ
(2)
M

[
ĉ
(2)
M

ĉ1
+

1

n̂
(2)
M ∆n̂

(2)
M

]
t

)
− 1

, (17.65)

where the integration constants C(1′)
1 and C(2′)

1 can be determined with the help
of initial conditions for fast relaxation.
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Equations for higher moments can be solved analytically. As it follows from
Eqs. (17.23) and (17.38),

∆M
(1)
2 (t) = C(1′)

2 exp

{
− 2ĵ(1)

M t

(∆n̂
(1)
M )2

}
+ 2ĵ(1)

M

t∫
0

⎡⎢⎣ n̂
(1)
M ∆M

(1)
1 (t′)(

∆n̂
(1)
M

)2 +

(17.66)

+
(
M

(1)
1 + ∆M

(1)
1 (t′)

)
ξ1(t′)

]
exp

{
−2ĵ(1)

M (t− t′)

(∆n̂
(1)
M )2

}
dt′ ,

∆M
(2)
2 (t) = C2′

2 exp

⎧⎨⎩−2ĵ(2)
M

n̂
(2)
M

t∫
0

(
1

∆n̂
(2)
M

− ξ1(t′))dt′

⎫⎬⎭+

(17.67)

+
2ĵ(2)

M

n̂
(2)
M

t∫
0

(
2∆M

(2)
1 (t′) + M

(2)
2 ξ1(t′)

)
exp

⎧⎨⎩−2ĵ(2)
M

n̂
(2)
M

t∫
t′

(
1

∆n̂
(2)
M

− ξ1(t′′))dt′′

⎫⎬⎭ dt′ ,

where C(1′)
2 and C2′

2 are the corresponding integration constants.

17.8 Conclusions

As we could see in the previous sections, the proposed approach allows one to
find the complete time dependence of any moment of the distribution function
of molecular aggregates in the micellar solution at the stage of fast relaxation.
In this way, the approach is equivalent to deriving an analytical solution of non-
linear kinetic equation of micellization for fast relaxation. Equations (17.23) and
(17.41) together with Eqs. (17.46) and (17.47) determine the time behaviour in
the case of existence of short micelles only, Eqs. (17.38) and (17.50) together
with Eqs. (17.55) and (17.56) determine the time behaviour in the case of ex-
istence of lengthy micelles only, and Eqs. (17.23), (17.38) and (17.59) together
with Eqs. (17.64)–(17.67) determine the time behaviour of moments for coexist-
ing short and lengthy micelles. These results take into account the influence of
initial conditions at fast relaxation.

The higher-order moments of the distribution function of molecular aggregates
depend on the lower-order moments but have also their own contributions. Thus
there are specific times of fast relaxation for every moment. This behaviour is
similar to that predicted by the linear kinetic theory in Refs. 1-6, but the set of
specific times in the nonlinear theory is richer.
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Doch erscheint eine Rückerinnerung an die älteren Erfahrungen,
die zur Festlegung der gebräuchlichen Begriffe und zur

Aufstellung oft erwähnter empirischer Regeln geführt haben,
notwendig, weil sie bei der heutigen Generation grossenteils in
Vergessenheit geraten sind. Von diesen umfangreichen Arbeiten
der früheren Zeit . . . ist in die modernen Hand- und Lehrbücher

fast nichts übergegangen – ein Zeugnis dafür, wie gering die
Summe vieljähriger rein empirischer Forschung gewertet wird,
der die Einfügung in das physikalisch-chemische Gesamtbild

mangelt.

Max Volmer (1939)

Abstract

The well and the saddle points of the work of droplet formation on a soluble nucleus in
undersaturated vapor have been analyzed in their dependence on droplet and nucleus
sizes and chemical potential of vapor molecules. The direct (deliquescence) and reversal
(efflorescence) activation barriers for transitions of droplets between states with partially
and completely dissolved condensation nuclei have been numerically studied. It has been
taken into account that the behavior of the work of droplet formation in the vicinity
of its saddle point differs essentially in the cases when the vapor chemical potential is
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close to its threshold value corresponding to barrierless dissolution of condensation nu-
cleus (deliquescence threshold) and when it is noticeably below this threshold value (but
far from reaching the efflorescence threshold). Coefficients of the diagonalized quadratic
forms of the work of droplet formation on a soluble nucleus in undersaturated vapor in
the neigborhood of the minimum and the saddle points of the work have been numerical-
ly studied. Exchange of the roles of thermodynamically stable and thermodynamically
unstable variables in transitions over the deliquescence and efflorescence barriers near
the deliquescence threshold and noticeably below it has been found and explained.

18.1 Introduction

Thermodynamics of thin liquid films plays the key role in understanding the
specific features of the deliquescence stage in nucleation on soluble nuclei in su-
persaturated and undersaturated vapors [1 - 4]. We will rely in the present work
upon the basic thermodynamic relations describing the deliquescence stage in
nucleation on soluble nuclei. In particular, the conditions of chemical equilibrium
of the droplet with partially dissolved nucleus and the expression for the work of
droplet formation on a soluble condensation nucleus are of importance [4].

It is known [1 - 5] that there are two specific values of the vapor chemical po-
tential in nucleation on soluble nuclei which are called the deliquescence and
efflorescence thresholds. Above the deliquescence threshold, the activation bar-
rier for formation of a droplet around a soluble condensation nucleus vanishes
and heterogeneous nucleation occurs intensively with complete dissolution of the
nuclei in droplets (i.e. deliquescence proceeds barrierlessly). Below the efflores-
cence threshold, the activation barrier for crystallization of a salt nucleus within
the droplet of solution becomes so small that the nuclei form in the droplets
immediately (i.e. efflorescence proceeds very fast).

At the state of internal equilibrium of the droplet with incompletely dissolved
condensation nucleus, the size of the residue of the nucleus is a function of the
number of condensate molecules in the droplet. The deliquescence threshold value
of the vapor chemical potential coincides with a maximum in the dependence of
the condensate chemical potential in the heterogeneous droplet on the number of
condensate molecules in the droplet. In the case of high solubility of the matter
of condensation nuclei in the liquid condensate, this maximum turns to be below
the equilibrium value of the condensate chemical potential for a flat interface
between liquid and vapor phases of pure condensate. Thus the deliquescence
threshold value of the vapor chemical potential corresponds to negative vapor
supersaturations and can be well observed in undersaturated vapor [5].
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360 18 Deliquescence and Efflorescence Barriers in Heterogeneous Nucleation

Below the deliquescence threshold, the kinetic theory of heterogeneous nucle-
ation [6 - 8] provides a link between thermodynamics and experimental data on
nucleation rates and characteristic times. The kinetic theory requires knowledge
of the direct (deliquescence) and reversal (efflorescence) activation barriers for
the transition of the droplet between the states with partially and completely
dissolved nucleus. If we decrease the vapor chemical potential below the deliques-
cence threshold, the probability of overcoming the direct activation barrier stays
significant only at small deviations from the threshold.

We will extend in this paper the description of the deliquescence stage of soluble
nuclei in undersaturated vapor by investigation of the dependence of the deli-
quescence and efflorescence barriers on the vapor undersaturation. First we will
study the behaviour of minima and saddle points of the work of droplet forma-
tion on soluble condensation nucleus as functions of the nucleus size and vapor
chemical potential. As a next step, the values of the direct and reversal activa-
tion barriers will be numerically found. For a droplet formed around partially
dissolved condensation nucleus, the analysis of coefficients of the quadratic forms
of the work of the droplet formation in the vicinities of extrema of the work will
be performed. This analysis will allow us to establish and explain the important
new fact: exchange of roles of thermodynamically stable and thermodynamically
unstable variables in transitions over the deliquescence and efflorescence barriers
at values of the vapor chemical potential near the deliquescence threshold and
noticeably below it but far from reaching the efflorescence threshold.

18.2 Two-dimensional Surface of the Work of Droplet

Formation

As was shown in [4], the work W (ν, ν ′n) of droplet formation on a partially dis-
solved nucleus (determined as a function of the number ν of molecules condensed
in the droplet out of vapor, the number ν ′n of molecules in spherical residue of
condensation nucleus, and the chemical potential µβ of vapor molecules at ab-
solute temperature T ) has the following form in the approximation of an ideal
solution within the liquid film around the residue of nucleus:

W = −ν
(
µβ − µ∞

)
+ kBT

(
νn − ν ′n

)(
ln
(

x

x∞

)
− 1
)

+ 4πR′2n σγα +

(18.1)

+ 4πR2σαβ − 4πR2
nσγβ + 4πR′2n lK exp

[
−(R−R′n)

l

]
,
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where µ∞ is the equilibrium value of the condensate chemical potential in the
case of flat interface between liquid and vapor phases of pure condensate, kB is
the Boltzmann constant, νn is the initial number of molecules within the soluble
nucleus, x = (νn−ν ′n)/ν is the relative bulk solute concentration (in the solution
with the same chemical potentials of the solvent and solute molecules as in the
thin liquid film around the residue of the nucleus), x∞ is the solubility of the
nucleus matter at equilibrium with a flat interface between solid phase of the
nucleus matter and the bulk solution. Indices α, β and γ mark the quantities
referred to the liquid, vapor and solid phases, correspondingly, while the double
indices γβ, γα and αβ mark the quantities referred to the interfaces between the
solid particle and vapor, solid particle and liquid film, the film and the vapor,
respectively; σγβ , σγα and σαβ are the surface tensions referred to indicated
interfaces. 4πR2

n, 4πR′2n and 4πR2 are the areas of spherical surfaces with radii Rn,
R′n and R. The last term in Eq. (18.1) takes into account the effect of overlapping
of the liquid film surface layers at the boundaries with the vapor and the residue
of the nucleus. This overlapping is responsible for existence of the disjoining
pressure in the film. It is assumed in Eq. (18.1) that the structural component
ΠD of the disjoining pressure plays the main role: ΠD = K exp [−(R−R′n)/l] [6,
9, 10] where K = (σγβ − σαγ − σαβ)/l and l are the parameters of the isotherm
of structural component of the disjoining pressure.
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Fig. 18.1 Surface of the work F (ν, ν′
n) of droplet formation at the vapor chemical potential

b = −0.2.

Under the assumption of nonvolatile nucleus matter and negligible adsorption of
condensate and dissolved matter of nucleus at the boundaries of the liquid film in
the droplet, the number ν of condensate molecules in the droplet with partially
dissolved nucleus may be related to the droplet volume VR = 4πR3/3, to the
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volume of the nucleus residue VR′
n

= 4πR′3n /3, to the numbers νn = 4πR3
n/3vn

and ν ′n = 4πR′3n /3vn of molecules in the nucleus and its residue (vn is the specific
molecular volume of the nucleus matter in solid phase) by the relation

ν =
[
VR − VR′

n
− vα

n

(
νn − ν ′n

)] /
vα , (18.2)

where vα and vα
n are the partial molecular volumes in bulk solution for solvent

and solute, respectively.
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Fig. 18.2 Level lines of the work F (ν, ν′
n) of droplet formation at the vapor chemical potential

b = −0.25.

We will deal below with the dimensionless work of droplet formation F ≡ W/kBT
and the dimensionless chemical potential of vapor b ≡ (µβ − µ∞

) /
kBT . The com-

puted surface of the dimensionless work of droplet formation F (ν, ν ′n) is shown in
Fig. 18.1 for the value b = −0.2 of the vapor chemical potential. This surface of
the work has been computed with Eqs. (18.1) and (18.2) and following numerical
values for the parameters:

Rn = 15 · 10−7cm , vn = 2 · 10−23cm3 ,

vα = 3 · 10−23cm3 , vα
n = 2.2 · 10−23cm3 , (18.3)

T = 298 K , σαγ = 200 dyn/cm , σαβ = 72 dyn/cm ,

x∞ = 0.2 , l = 2 · 10−7 cm , K = 3 · 109 dyn/cm2 .
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Profile of the bottom of the surface of work F (ν, ν ′n) of droplet formation in
Fig. 18.1 corresponds to a specific (equilibrium) path of transition of the condens-
ing droplet between the states with partially and completely dissolved nucleus
that goes through the states where the residue of the nucleus stays in equilibri-
um with solution in the liquid film. This path is clearly visible in Fig. 18.1 as
the valley-line with minimum and maximum. The similar path has no maximum
in the case of droplet formation at the value b = −0.25 of the vapor chemi-
cal potential. So we used in Fig. 18.2 the lines of level to show the behaviour
of the work F (ν, ν ′n) of droplet formation at the value b = −0.25 of the vapor
chemical potential. Fig. 18.1 illustrates the situation when the droplet state with
completely dissolved nucleus is more stable then the droplet state with partial-
ly dissolved nucleus because the minimum of the work F (ν, ν ′n) at the state of
complete dissolution of nucleus in droplet is deeper than the minimum at the
state with partially dissolved nucleus. Fig. 18.2 illustrates the opposite case when
the state with partially dissolved nucleus corresponds to deeper minimum of the
work F (ν, ν ′n) than the state with completely dissolved nucleus.

Previously [4], within the framework of the one-dimensional kinetic approach
associated with the equilibrium path of droplet transition from the state with
partially dissolved nucleus to the state with completely dissolved nucleus, we
did not consider heterogeneous nucleation at such notable undersaturations of
vapor as in the case corresponding to the value of the vapor chemical potential
b = −0.25. The one-dimensional kinetic approach is applicable in the vicinity of
the deliquescence threshold. The deliquescence transition is impossible noticeably
below the deliquescence threshold, but the efflorescence transition may take place
if we already have a distribution of droplets with completely dissolved nuclei.

Below we will analyze the well and saddle points of the work F (ν, ν ′n) of hetero-
geneous droplet formation and their two-dimensional neighborhoods in variables
ν and ν ′n at any concentration of undersaturated vapor, keeping in mind not only
the kinetics of direct transitions with dissolution of nucleus in droplet but also
the development of kinetics of reversal transitions with crystallization of nucleus
in droplet of solution.

18.3 Well and Saddle Points of the Work of Droplet

Formation at Partial Dissolution of the Nucleus

The equations for extreme points of the work W (ν, ν ′n) of droplet formation at
partial dissolution of the nucleus serve as conditions of chemical equilibrium with-
in the droplet with respect to the solvent and solute. These conditions lead to
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the Gibbs-Kelvin-Kohler and Ostwald-Freudlich equations [4], respectively:

µβ − µ∞ = kBT
νn − ν ′n(ν)

ν
− 2σαβvα

R
+

R′2n
R2

Kvα exp
[
−(R−R′n)

l

]
, (18.4)

kBT ln
(

νn − ν ′n(ν)
νx∞

)
=

2vn

R′n(ν)

[
σαγ + lK exp

(
−R−R′n(ν)

l

)]
(18.5)

−2σαβ (vα
n − vn)

R
+ K exp

(
−R−R′n(ν)

l

)[
vn − R′2n (ν)

R2
(vn − vα

n)
]

.
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Fig. 18.3 Dependence of equilibrium values of ν′
n on ν.

The numerical solution of the equation Eq. (18.4) with the help of Eqs. (18.2)
and (18.3) allows us to determine an equilibrium path ν ′n (ν) which is depicted
in Fig. 18.3. We see that the path ν ′n (ν) has a turning point at ν = νi. The
solution in a droplet cannot be in equilibrium with the residue of nucleus at
ν > νi. It means that the nucleus should be completely dissolved in the droplet
in equilibrium state at ν > νi. Let us notice that νi depends on the initial number
νn of molecules in the nucleus as the external parameter of the task.

If a value of the number ν of condensate molecules in a droplet is not arbitrary but
satisfies Eq. (18.4) at a specified value of dimensionless vapor chemical potential
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b, then the points of the path ν ′n (ν) in Fig. 18.3 correspond to different values
of b. In particular, the point ν ′n (νi) at ν = νi corresponds to the value b = bi.
The dependences of equilibrium values of ν ′n and ν on b, obtained as a result of
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simultaneous numerical solution of Eqs. (18.4) and (18.5) with use of Eqs. (18.2)
and (18.3), are shown in Figs. 18.4 and 18.5. The upper curve for ν (b) in Fig. 18.5
corresponds to the droplet state with completely dissolved nucleus and the lower
curve (with turning points b = bi and b = bm) corresponds to the state with
partially dissolved nucleus.

As can be seen from Fig. 18.4 and Fig. 18.5, there are no stable equilibrium values
of ν ′n and ν in the state with partially dissolved nucleus at b > bm, but there
are stable values of ν at the state of full dissolution of the nucleus. Obviously,
the value bm coincides with the deliquescence threshold value of vapor chemical
potential for transition of droplet from the states with partially dissolved nucleus
to states with completely dissolved nucleus.

Let us now separate the equilibrium values of ν ′n (b) and ν (b) in Figs. 18.4 and 18.5
with respect to minimum and saddle points of the work of droplet formation in the
state at incomplete dissolved nucleus in the droplet. We will mark quantities taken
at the minimum and saddle points with the lower indices e and c, respectively.

As is known, the criteria of a minimum of the work F (ν, ν ′n) as a function of two
variables can be written as

∂F

∂ν

∣∣∣∣
νe,ν′

n(νe)

= 0 ,
∂F

∂ν ′n

∣∣∣∣
νe,ν′

n(νe)

= 0 , (18.6)
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∂2F

∂ν2

∣∣∣∣
νe,ν′

n(νe)

> 0 , D|νe,ν′
n(νe)

> 0 , (18.7)

where

D ≡
(

∂2F

∂ν2

)(
∂2F

∂ν ′2n

)
−
(

∂2F

∂ν ∂ν ′n

)2

. (18.8)

The corresponding criteria of a saddle point of the work F (ν, ν ′n) have the form

∂F

∂ν

∣∣∣∣
νc,ν′

n(νc)

= 0 ,
∂F

∂ν ′n

∣∣∣∣
νc,ν′

n(νc)

= 0 , D|νc,ν′
n(νc)

< 0 . (18.9)
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Fig. 18.7 Dependence of D on dimensionless vapor chemical potential b.

The behaviour of the quantities ∂2F/∂ν2 and D in their dependences on the
vapor chemical potential is shown in Figs. 18.6 and 18.7, respectively. These
quantities have been calculated for a droplet with partially dissolved nucleus of
condensation with Eqs. (18.1)–(18.3) at equilibrium values of ν ′n = ν ′n(b) and
ν = ν(b) (which correspond to the curves in Figs. 18.4 and 18.5) at different
values of vapor chemical potential. As follows from Eqs. (18.6) and (18.9), the
points ν ′n = ν ′n(b) and νc = ν(b) at values b for which the curve D in Fig. 18.7 lies
below zero, coincide with the saddle points of the work of droplet formation. We
have at this 0 < ν ′n(νc) < ν ′n(bm) and ν(bm) < νc < ν(bi). The points ν ′n = ν ′n(b)
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Fig. 18.8 Dependence of minima and saddle point of the work F of droplet formation on dimen-
sionless vapor chemical potential b.

and νe = ν(b) at values b for which the curve D in Fig. 18.7 lies above zero,
coincide with the minimum points of the work of droplet formation. We have at
this ν ′n(bm) < ν ′n(νe) < νn and 0 < νc < ν(bm).

The results obtained, together with Eqs. (18.1)–(18.3), allow us to study the
behaviour of the values Fe1, Fe2 of the work of droplet formation in the minima
points at partial and complete dissolution of nucleus and the behavior of the
value Fc of the work of droplet formation in the saddle point. The corresponding
dependences of Fe1, Fe2 and Fc on the vapor chemical potential are presented in
Fig. 18.8. As we can see from Fig. 18.8, the curves of Fe1 and Fc converge at the
deliquescence threshold value b = bm of vapor chemical potential. The curves of
Fe1 and Fe2 can intersect at some value of the chemical potential. This means
that the values of direct ∆F1 ≡ Fc − Fe1 and reversal ∆F2 ≡ Fc − Fe2 activation
barriers for transition of droplet between states with partially and completely
dissolved nucleus become equal at this value.

For clarity sake, the dependences of deliquescence and efflorescence barriers on
the vapor chemical potential are shown in Fig. 18.9. It should be noted that tran-
sitions between the states of the droplet with partially and completely dissolved
nucleus are possible in a real situation only at ∆F1,2 � 100. As follows from
Fig. 18.9, the activation barrier ∆F1 is small at those values of undersaturated
vapor chemical potential, at which the activation barrier ∆F2 is always very high,
and on the contrary, the activation barrier ∆F2 is small at those values of vapor
chemical potential, at which the activation barrier ∆F1 appears to be high. As
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Fig. 18.10 Dependence of coefficients Qe and Qc on dimensionless vapor chemical potential b.

can be seen from Fig. 18.9, the range of values of the vapor chemical potential,
which is of importance for deliquescence transition, lies in the very narrow vicin-
ity of the deliquescence threshold below b = bm = −0.193. The range of values of

vch 4 Jun 2008 11:06



370 18 Deliquescence and Efflorescence Barriers in Heterogeneous Nucleation

the vapor chemical potential, which is of importance for efflorescence transition,
lies in the vicinity of the efflorescence threshold at b = beff < −1.5.

18.4 Stable and Unstable Variables of the Droplet

State

In order to describe the overcoming the activation barrier in kinetics of nucleation,
one needs to know the behaviour of the work of droplet formation only in rather
small neighborhoods of extreme points of the work. In these neighborhoods, the
work F (ν, ν ′n) can be approximated by the quadratic form in deviations ν − νe,c

and ν ′n − ν ′ne,c
:

F = Fe,c +
1
2

(
∂2F

∂ν2

)
e,c

(ν − νe,c)
2 + (18.10)

+
(

∂2F

∂ν ∂ν ′n

)
e,c

(ν − νe,c)(ν ′n − ν ′ne,c
) +

1
2

(
∂2F

∂ν ′2n

)
e,c

(ν ′n − ν ′ne,c
)2 .

As was already noticed, the bottom indices e and c mark the values referring
to the minimum and saddle point of the work at incomplete dissolution of the
nucleus, respectively. Thus the quadratic form in Eq. (18.10) refers to both the
well and saddle neighborhoods.

The quadratic form in Eq. (18.10) can be reduced to a diagonal form in new
variables y(e,c) and z(e,c) with the help of linear transformations [11 - 13]:

F = Fe,c + Qe,c

(
y(e,c)

)2
+ Pe,c

(
z(e,c)

)2
, (18.11)

y(e,c) = (ν − νe,c) cos ϕe,c + (ν ′n − ν ′ne,c
) sinϕe,c , (18.12)

z(e,c) = −(ν − νe,c) sin ϕe,c + (ν ′n − ν ′ne,c
) cos ϕe,c . (18.13)

The coefficients Qe,c and Pe,c in Eq. (18.11) and the parameter ϕe,c of the trans-
formations in Eqs. (18.12) and (18.13) are determined with the help of second
derivatives of the work F (ν, ν ′n) by [7]:

Qe,c =
1
2

[(
∂2F

∂ν2

)
e,c

cos2 ϕe,c +
(

∂2F

∂ν ∂ν ′n

)
e,c

sin 2ϕe,c +
(

∂2F

∂ν ′2n

)
e,c

sin2 ϕe,c

]
,
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Pe,c =
1
2

[(
∂2F

∂ν2

)
e,c

sin2 ϕe,c −
(

∂2F

∂ν ∂ν ′n

)
e,c

sin 2ϕe,c +
(

∂2F

∂ν ′2n

)
e,c

cos2 ϕe,c

]
,

tg 2ϕe,c =
2
(
∂2F/∂ν ∂ν ′n

)
e,c

(∂2F/∂ν2)e,c − (∂2F/∂ν ′2n )e,c

. (18.14)

It is interesting to investigate the dependence of the coefficients Qe,c and Pe,c

on the vapor chemical potential b. The behaviour of the coefficients Qe,c and
Pe,c near the threshold value b = bm of the vapor chemical potential is shown in
Figs. 18.10 and 18.11. The curves of Qe and Qc, as well as curves Pe and Pc,
merge at the threshold value b = bm of the vapor chemical potential.
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Fig. 18.11 Dependence of coefficients Pe and Pc on dimensionless vapor chemical potential b.

As follows from Fig. 18.10, Qc < 0 and Qe > 0. As follows from Fig. 18.11,
Pe > 0 at any b ≤ bm, whereas Pc remains positive only at bi < b ≤ bm. It
was noticed in [11 - 13], that the positive coefficient before a squared variable in
the diagonalized form in Eq. (18.11) means, that this variable is stable during
phase transformation, i.e. the droplet tends to return to an equilibrium state after
deviation of this variable from its equilibrium value. Negative coefficient before a
squared variable in the diagonalized form in Eq. (18.11) means, that this variable
is unstable during the phase transformation, i.e. the phase transformation occurs
with changing this variable. Thus the variable y(c) is unstable while the variable
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Fig. 18.12 Switching of coefficients Qc and Pc in the neighborhood of the value b = bi.

z(c) is stable in transitions over direct and reversal activation barriers slightly
below the deliquescence threshold.

Let us see the behaviour of coefficients Qc and Pc in the range of values of vapor
chemical potential b ≤ bi which is noticeably below the deliquescence threshold
but can be well above the efflorescence threshold. As follows from Fig. 18.12,
there is a jump of coefficients Qc and Pc at the point b = bu, bi � bu. Both
coefficients change their signs with passing b = bu, the coefficient Qc becomes
positive at b < bu whereas it was negative at b > bu, and the coefficient Pc be-
comes negative at b < bu whereas it was positive at b > bu. Therefore we can say
that the variables y(c) and z(c) interchange their roles with passing b = bu. The
variable y(c) becomes thermodynamically stable and the variable z(c) turns to be
thermodynamically unstable in transitions over the deliquescence and efflores-
cence activation barriers below b = bu. This interchange of the roles of variables
corresponds to switching (with decreasing the vapor chemical potential) from the
heterogeneous nucleation of droplets on condensation nuclei in the vapor (with
slow dissolution of the nucleus in the droplet and fast increasing the droplet size)
to fast homogeneous crystallization of nuclei in the existing droplets consisted of
supersaturated solution (with slow decreasing the droplet size).
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