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INTRODUCTION

The steady-state rate of nucleation is the regular fre-
quency at which significantly overcritical droplets
appear after the completion of the incubation period,
the droplets further growing irreversibly; this rate is
established in the course of overcoming the activation
barrier of nucleation by the droplets. The height of this
barrier is the activation energy of nucleation depends
on the vapor supersaturation and, at the heterogeneous
nucleation of a droplet on wettable condensation
nucleus, is set by the difference in the height of poten-
tial barrier and the depth of potential well of the work
of droplet formation on a nucleus. If, in the process of
nucleation, the vapor supersaturation varies rather
slowly as compared with the establishment of the
steady-state regime of overcoming the activation bar-
rier of nucleation at a current vapor supersaturation, the
nucleation rate can be approximately considered as the
steady-state value characterizing the quasi-steady-state
regime of barrier overcoming. In order to answer more
definitely when this approximation is valid, we should
find the characteristic times of the incubation stage of
nucleation, in particular, the time of the establishment
of steady-state droplet distribution in the vicinity of the
maximum of the work of droplet formation with allow-
ance for the presence of preceding minimum of the for-
mation work. These times will be determined in this
work and it will be shown when the non-steady-state
rate of nucleation becomes practically equal to the
steady-state rate of nucleation.

In a final section of this work, the characteristic
times thus determined will be compared with the earlier
obtained times of the establishment of quasi-steady-
state regime of overcoming the activation barrier in the

kinetics of homogeneous and heterogeneous nucleation
[1–8], as well as in the kinetics of the initial stages of
micellization [9]. Speaking of macroscopic wettable
nuclei, we will have in mind the aerosol particles com-
posed of substance both soluble and insoluble in a liq-
uid condensing from vapor.

1. BASIC THERMODYNAMIC RELATIONS

We denote the chemical potential of condensate in
the droplet by 

 

b

 

ν

 

 considering it as a function of the
number 

 

ν

 

 of condensate molecules, and the chemical
potential of vapor, by 

 

b

 

. Chemical potentials 

 

b

 

ν

 

 and 

 

b

 

are expressed in thermal energy units 

 

kT

 

 (where 

 

k

 

 is
Boltzmann’s constant and 

 

T

 

 is the temperature of vapor
and droplet) and measured from the level corresponding
to the equilibrium between the vapor and the condensed
liquid at a flat contact surface. The work of droplet heter-
ogeneous formation in vapor on the aerosol particle
expressed in energy units 

 

kT

 

 is denoted by 

 

F

 

ν

 

.
For work 

 

F

 

ν

 

 we have general thermodynamic rela-
tion

 

(1.1)

 

The dependence of work 

 

F

 

ν

 

 of droplet heterogeneous
formation on the number 

 

ν

 

 of condensate molecules in
the droplet is qualitatively shown in Fig. 1. The values
of 

 

ν 

 

corresponding to the equilibrium and critical drop-
lets, that is to the minimum and maximum of the work

 

F

 

ν

 

, we denote by 

 

ν

 

e

 

 and 

 

ν

 

c

 

, respectively. The values of

 

ν

 

e

 

 and 

 

ν

 

c

 

 are determined from the equality of the right-
hand side of expression (1.1) to zero. The value of 

 

ν

 

corresponding to the threshold value of the chemical
potential of vapor 

 

b

 

th

 

 (i.e., to the largest maxima of the
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condensate chemical potential 

 

b

 

ν

 

, provided that there
are several maxima) is denoted by 

 

ν

 

t

 

h

 

; this value is
found from the solution of equation

 

(1.2)

 

In the following, subscripts th, 

 

e

 

, and 

 

c

 

 at the values will
indicate that these values are determined at 

 

ν

 

 

 

= 

 

ν

 

th

 

, 

 

ν

 

 = 

 

ν

 

e

 

,
and 

 

ν

 

 = 

 

ν

 

c

 

, respectively.
In the case of macroscopic condensation nuclei, the

intense process of nucleation proceeds at the values of
the chemical potential of vapor 

 

b

 

 located in the sub-
threshold region, i.e., at

 

(1.3)

 

(see [1, 10–12] for more detail). For the condensate
chemical potential 

 

b

 

ν

 

, we can use the parabolic approx-
imation in the vicinity of point 

 

ν

 

th

 

(1.4)

 

At the parabolic approximation (1.4), the activation
energy of nucleation 

 

∆

 

F

 

 and the coordinates of 

 

ν

 

e

 

, and

 

ν

 

c

 

 depend on 

 

ε

 

 as [10–12]

 

(1.5)

(1.6)

(1.7)

 

In the subthreshold region of vapor supersaturation,
we can confine ourselves to the values of 

 

∆

 

F

 

 

 

≤

 

 15

 

. At
larger heights of activation barrier, the intensity of het-
erogeneous nucleation becomes negligible.

As supplementary characteristics, we determine the
half-width 

 

∆ν

 

e

 

 of the potential well in the vicinity of the
minimum of the work of droplet formation and the half-
width 

 

∆ν

 

c

 

 of the potential barrier in the vicinity the
maximum of this work at the 

 

ν

 

-axis. With allowance for
Eqs. (1.1), (1.4), (1.6), and (1.7), we have [10–12]

 

(1.8)

 

It follows from Eqs. (1.5)–(1.8) that values 

 

∆

 

F

 

, 

 

ν

 

e

 

, 

 

ν

 

c

 

,

 

∆ν

 

e

 

, and 

 

∆ν

 

c

 

 are interrelated by the simple expressions

 

(1.9)

 

In the following, the vicinities of minimum and
maximum of the work of droplet formation will be
understood as the near-equilibrium 

 

|ν 

 

– 

 

ν

 

e

 

|

 

 &

 

 

 

∆ν

 

e

 

 and
near-critical 

 

|ν 

 

– 

 

ν

 

c

 

|

 

 &

 

 

 

∆ν

 

c

 

 regions, respectively. We
assume that these regions are not intersected at the 

 

ν

 

-axis;
however, strong inequalities 

 

(

 

ν

 

c

 

 – 

 

ν

 

e

 

)/

 

∆ν

 

c

 

 

 

@

 

 1

 

 or 

 

(

 

ν

 

c

 

 –

 

ν

 

e

 

)/

 

∆ν

 

e

 

 

 

@

 

 1

 

 sometimes cannot be fulfilled. It follows
from Eq. (1.9) that 

 

∆

 

F

 

 

 

≈ 

 

2

 

 can be considered as a lower
limit of the values of activation energy. The vicinity of

∂bν/∂ν th 0.=

b bth 1 ε–( ) ε 0, ε ! 1>( )=

bν bth
1
2
--- ∂2bν

∂ν2
----------

th

ν ν th–( )2.–=

∆F
4
3
---ε3/2bth

3/2 2/ ∂2bν/∂ν2
th[ ] 1/2

,=

νe ν th 2εbth/ ∂2bν/∂ν2
th[ ] 1/2

,–=

νc ν th 2εbth/ ∂2bν/∂ν2
th[ ] 1/2

.+=

∆νe ∆νc 2/εbth ∂2bν/∂ν2
th( )1/4

.= =

νc νe–( )2/3∆νe
2 νc νe–( )2/3∆νc

2 ∆F.= =

intersection point ν = νth is taken as the entire νe – ∆νe &

ν & νc + ∆νc region.

2. THE KINETIC EQUATION OF NUCLEATION

We denote the number of droplets with size ν per
unit volume of the vapor–gas medium at time t by nν(t).
Droplet size distribution nν(t) increases in time accord-
ing to the kinetic balance equation [5, 13, 14]

(2.1)

where the droplet flux Jν at the transition unit {ν 
ν + 1} is determined as

(2.2)

Here,  and  are the numbers of vapor mole-
cules absorbed by the droplet of ν molecules and, cor-
respondingly, emitted by the droplet of ν + 1 molecules
per unit time. In a free molecular regime of the absorp-
tion of vapor molecules, we have

(2.3)

where αC is the coefficient of vapor molecule conden-
sation at the droplet surface, n1 is the concentration of
vapor molecules, vT is the average thermal velocity of
vapor molecules, and Sν is the droplet surface area.

It is convenient to pass to a new distribution func-
tion, using relation

(2.4)

where  and  are the equilibrium and steady-state
droplet size distributions, respectively. For the equilib-
rium and steady-state distributions, we have

(2.5)

(2.6)

where Js is ν-independent steady-state nucleation
velocity at given vapor supersaturation.

∂nν t( )/∂t Jν 1– Jν,–=

Jν Wν
+nν Wν 1+

– nν 1+ .–=

Wν
+ Wν 1+

–

Wν
+ αC v T /4( )n1Sν,=

f ν t,( ) nν nν
s( )–( )/nν

0( ),=

nν
0( ) nν

s( )

Jν nν nν
0( )=

0,=

Jν nν nν
s( )=

Js,=

Fν νe νth νc ν

∆F

Fig. 1. The work of droplet formation versus the number of
condensate molecules ν.
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Substituting Eq. (2.4) into Eq. (2.1) with allowance
for Eqs. (2.2), (2.5), and (2.6), assuming the sufficient
flatness of f(ν, t) as a function of ν, and retaining only
two first terms in expansions f(ν, t) – f(ν – 1, t) and
f(ν + 1, t) – f(ν, t) in powers of ν at ν @ 1, we rewrite
Eq. (2.1) as

(2.7)

If the inequality |∂Fν/∂ν| ! 1 is additionally fulfilled,

Eq. (2.7) can be, with the aid of equality  =

exp(Fν + 1 – Fν), presented in the form

(2.8)

At the macroscopicity of condensation nuclei, ine-
qualities ν @ 1 and |∂Fν/∂ν| ! 1 are readily fulfilled in
the vicinities of extrema of the formation work Fν at the
droplet size axis. As follows from Eqs. (1.1) and (1.4),
derivative ∂Fν/∂ν in the vicinity of extrema of Fν and in
the region between the extrema is maximal in the inflec-
tion point ν = νth. With allowance for Eqs. (1.1) and
(1.3), equality ∂Fν/∂ν|th = bthε is fulfilled in the inflec-
tion point; because strong inequalities bth ! 1 and ε ! 1
take place for macroscopic nuclei [1, 10–12], inequality
∂Fν/∂ν|th ! 1 is valid. Thereby, we are convinced that
inequality |∂Fν/∂ν| ! 1 is fulfilled within the entire
vicinity νe – ∆νe & ν & νc + ∆νc of the inflection point
ν = νth. Equation (2.8) will be solved in the next section.

Let us cite the explicit relations for , , and Js.
They can be found, if one takes into account that
Eq. (2.1) for distribution nν(t) at ν @ 1 and |∂Fν/∂ν| ! 1
can be written in the form of the Fokker–Planck equa-
tion [15]

(2.9)

where, with allowance for Eq. (2.2) and flatness of 

followed from Eq. (2.3) and expression for , we
have

(2.10)

Let us assume that nν, , and  tend to zero and
virtually coincide while moving to the left of the left
boundary of the vicinity of the minimum of work Fν at

the ν-axis. We also take into account that nν and 

become much smaller than  when moving along the
ν-axis to the right of the right boundary of the vicinity

of the maximum of work Fν. This implies that f(ν,

∂f ν t,( )/∂t Wν
+ Wν

––( )∂f ν t,( )/∂ν=

+
1
2
--- Wν

+ Wν
–+( )∂2 f ν t,( )/∂ν2.

Wν 1+
–

Wν
+

∂f ν t,( )/∂t Wν
+∂Fν/∂ν ∂Wν

+/∂ν–( )–=

× ∂f ν t,( )/∂ν Wν
+∂2 f ν t,( )/∂ν2.+

nν
0( ) nν

s( )

∂nν t( )/∂t ∂Jν/∂ν ,–=

Wν
+

Wν
–

Jν Wν
+∂Fν/∂νnν– Wν

+∂nν/∂ν .–=

nν
s( ) nν

0( )

nν
s( )

nν
0( )

nν
0( )

t)  0 takes place on the left and f(ν, t)  0, on the
right of the vicinity of the inflection point of work Fν.

The aforementioned boundary conditions to 
allow us to write explicit expressions for the steady-
state distribution and nucleation velocity. From Eqs. (2.6)
and (2.10), we find

(2.11)

(2.12)

where the upper limit in Eq. (2.11) and both limits of
integration in Eq. (2.12) are taken arbitrarily. As is seen,
at ∆F ≥ 2, the main contribution to the integrals in
Eqs. (2.11) and (2.12) is introduced by the near-critical

region, and the steady-state distribution  virtually

coincides with the equilibrium distribution  at ν <
νc – ∆νc. Indeed, representing the equilibrium distribu-

tion  as [1]

(2.13)

where nn is the concentration of nuclei per unit volume,
with a good accuracy we obtain from Eqs. (2.11) and
(2.12), the well-known relations

(2.14)

(2.15)

3. SOLUTION OF THE KINETIC EQUATION
IN THE VICINITY OF THE INFLECTION POINT 

OF THE WORK OF NUCLEUS FORMATION

Assuming, on the basis of equality (2.3), that  is
a sufficiently smooth function of ν throughout the
entire vicinity of the inflection point of the work of
droplet formation (which is of interest to us), ignoring
(at ν @ 1) corrections of the order of 1/ν and (νc – νe)/νth,
with adequate accuracy we can write the kinetic equa-
tion (2.8) in the following form:

nν
s( )

nν
s( ) Js ν ' Fν ' Fν–( )/Wν '

+expd

ν

νc ∆νc+( )

∫=

νe ∆νe & ν  & νc– ∆νc+( ),

Js nν
0( )/ ν ' Fν ' Fν–( )/Wν '

+ ,expd

νe ∆νe–( )

νc ∆νc+( )

∫=

nν
s( )

nν
0( )

nν
0( )

nν
0( ) nn/π1/2∆νe( ) Fe Fν–( ),exp=

nν
s( )

=  

nν
0( ) at ν  &  νc ∆νc–

nν
0( ) 1

1

π1/2∆νc

----------------- ν '
Wc

+

Wν '
+

-------- Fν ' Fc–( )expd

νc ∆νc–

ν

∫–

at ν  * νc ∆νc,–







Js nn

Wc
+

π∆νe∆νc

---------------------- ∆F–( ).exp=

Wν
+
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(3.1)

(that will be confirmed at the end of this section). Let us
introduce new variables

(3.2)

(3.3)

Evidently, value ν = νe corresponds to x = –1/2 and ν = νc,
to x = 1/2. Equation (3.1) in variables of Eqs. (3.2) and
(3.3) and with allowance for Eqs. (1.1), (1.3)–(1.7) is
written as

(3.4)

We assume

(3.5)

and choose the φ function such that, after substituting
Eq. (3.5) into Eq. (3.4), the coefficient at the first deriv-
ative with respect to z over x in the right-hand side of
Eq. (3.4) vanishes. Then, we have

(3.6)

In this case, Eq. (3.4) is reduced to the Schrödinger
non-steady-state equation

(3.7)

for the motion in potential

(3.8)

Taking into account relations (3.2), (1.1), (1.3)–
(1.7), and (2.13), it is easy to see that

(3.9)

Then, from Eqs. (2.4), (3.5), and (3.9) it follows

(3.10)

From Eqs. (3.2) and (3.10) with allowance for what
have been said in the preceding section, we arrive at the
following boundary conditions to Eq. (3.7)

(3.11)

Potential V is shown in Fig. 2 as a function of x at
two values of activation energy ∆F = 3 (curve 1) and
∆F = 10 (curve 2). It is seen that the potential has two

∂f ν t,( )/∂t W th
+ ∂Fν/∂ν∂f ν t,( )/∂ν–=

+ W th
+ ∂2 f ν t,( )/∂ν2

x
ν ν th–
νc νe–
----------------,=

τ
W th

+

νc νe–( )2
-----------------------t.=

∂f x τ,( )
∂τ

------------------- ∂2 f x τ,( )
∂x2

----------------------
3
2
---∆F 1 4x2–( )∂f x τ,( )

∂x
-------------------.–=

f φz=

φ 3∆F
4

----------- x
4
3
---x3– 

  .exp=

∂z
∂τ
----- ∂2z

∂x2
-------- 6∆Fx

9∆F2

16
------------- 1 4x2–( )2

+ z–=

V x( ) 6∆Fx
9∆F2

16
------------- 1 4x2–( )2

.+=

1/φ nν
0( ).∝

z nν nν
s( )–( )/ nν

0( ).∝

z 0 at x ∞;–

z 0 at x ∞.

minima at large ∆F values. As the activation energy
increases, the plot of the V(x) function becomes more
symmetric with respect to the ordinate and the coordi-
nates of minima approach the values of x = –1/2 and
x = 1/2. As ∆F decreases, the right minimum (in the
vicinity of the maximum of work Fν at the droplet size
axis) vanishes. With a large margin at –1 < x < 1, the par-
ticle motion in potential V(x) is restricted that is confirmed
by the boundary condition (3.11). The spectrum of eigen-
values of Hermitian [at boundary conditions (3.11)] oper-
ator in the right-hand side of Eq. (3.7) is real and discrete.

All what have been said above allow us to seek for
the solution of Eq. (3.7) by the method of separation of
variables in the following form

(3.12)

Here, Ci are the constants determined by the initial con-
dition; Ei are the eigenvalues numerated in ascending
order; and ϕi are eigenfunctions of equation

(3.13)

where operator  is set by expression

(3.14)

To find lower eigenvalues of operator  that deter-
mine the largest relaxation times, we use the Ritz
method. We take trial functions ψ0 and ψ1 in the form

(3.15)

(3.16)

z Ciϕ i x( ) Eiτ–( ).exp
i 0=

∞

∑=

Ĥϕ i Eiϕ i i 0 1 2…,, ,= =

Ĥ

Ĥ
d2

dx2
--------– 6∆Fx

9∆F2

16
------------- 1 4x2–( )2

.+ +=

Ĥ

ψ0 x α x ', ,( ) α /π( )1/4 1
2
---α x x '–( )2– 

  ,exp=

ψ1 x α xl, ,( ) 4α3/π( )1/4
x xl–( )=

× 1
2
---α x xl–( )2– 

  ,exp

1

2

–1.0 0

10

20

1

2

–0.5

0.5 1.0

30

40

50

x

V/∆F

Fig. 2. Dependences of value V/∆F on x at ∆F: (1) 3 and
(2) 10.
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where the x' value can take the values of xl, coordinate
of the left (smaller), and xr, coordinate of the right
(larger) minima of potential V at the x-axis, parameter α
being adjustment parameter. Let us define mean values
E0(α, x') and E1(α, xl) by relations E0(α, x') ≡

ψ0dx and E1(α, xl) ≡ ψ1dx. In view of

Eqs. (3.14)–(3.16), we have

(3.17)

(3.18)

We seek for the optimal values of parameter α
(denoted as α0, αl, and αr) from the condition imposed
on extrema for E0(α, xl), E0(α, xr), and E1(α, xl), respec-
tively. In this case, minimal values of E0(α, xl), E0(α, xr),
and E1(α, xl) determine actual eigenvalues E0, E1, and E2
of operator (3.14).

For the further discussion, we need to know coordi-
nates xl and xr. From equations for extrema of potential
V, we find xl and xr in the form of asymptotic expansions
in powers of 1/∆F

(3.19)

(3.20)

ψ0Ĥ
∞–

∞∫ ψ1Ĥ
∞–

∞∫

E0 α x ',( ) α
2
--- 6∆Fx '+=

+
9∆F2

16
------------- 1 4x '2–( )2

4
12x '2 1–

α
--------------------- 12

α2
------+ + ,

E1 α xl,( ) 3α
2

------- 6∆Fxl+=

+
9∆F2

16
------------- 1 4xl

2–( )2
12

12xl
2 1–
α

-------------------- 60

α2
------+ + .

xl
1
2
---– 1

3∆F
-----------– 1

3∆F2
------------- O

1

∆F3
--------- 

  ,+ +=

xr
1
2
--- 1

3∆F
-----------– 1

3∆F2
-------------– O

1

∆F3
--------- 

  .+=

Substituting expressions (3.19) and (3.20) into (3.17)
and (3.18), from condition to extrema for E0(α, xl),
E0(α, xr), and E1(α, xl), we obtain

(3.21)

(3.22)

(3.23)

respectively.
The plots of the dependences of optimal values of

parameters α0, αl, and αr on ∆F with exact solution of
equations with respect to extrema E0(α, xl), E0(α, xr),
and E1(α, xl) are shown in Fig. 3. As is seen, the values
of α0, αl, and αr increase almost linearly with ∆F; i.e.,
asymptotics (3.21)–(3.23) are good approximations for
these values.

Substituting expressions (3.19)–(3.23) into (3.17)
and (3.18), we find the asymptotic representations for
the desired eigenvalues

(3.24)

(3.25)

(3.26)

Eigenfunctions ϕi corresponding to these eigenval-
ues can be represented, with allowance for Eqs. (3.15)
and (3.16), as ϕ0 = ψ0(x, α0, xl), ϕ1 = ψ0(x, αr, xr), and
ϕ2 = ψ1(x, αl , xl). Figures 4 and 5 show the plots of
dependences of E0, E1, and E2 on ∆F, using exact rela-
tions for xl , xr, α0, αl, and αr (without requirement for
the smallness of 1/∆F). In view of evident linearity of
dependences for E1 and E2, we conclude that asymptot-
ics (3.25) and (3.26) result in good approximation of
these values.

It is reasonable to question the effect of approxima-
tions made when passing from Eq. (2.8) to Eq. (3.1) on
the found value of E0 [as the smallest eigenvalue of
operator (3.14)]. If we did not do this passage, we could
demonstrate that relation (3.24) would be transformed

into relation E0 =  –  –  +

. Evidently, while fulfilling strong ine-

quality (νc – νe)/νth ! 1, the effect of approximations
made during passage from Eq. (2.8) to Eq. (3.1) is
insignificant even for the smallest eigenvalue of E0.

α0 3∆F
9
2
--- O

1
∆F
------- 

  ,+ +=

α r 3∆F
3
2
---– O

1
∆F
------- 

  ,+=

α l 3∆F
11
2
------ O

1
∆F
------- 

  ,+ +=

E0 E0 α0 xl,( )≡ 11
4
------ 113

24∆F
--------------– O

1

∆F2
--------- 

  ,+=

E1 E0 α r xr,( )≡ 6∆F
13
4
------– O

1
∆F
------- 

  ,+=

E2 E1 α l xl,( )≡ 6∆F
47
4
------ O

1
∆F
------- 

  .+ +=

11
4
------ 11

12
------

νc νe–( )
ν th

-------------------- 113
24∆F
--------------

157
72∆F
--------------

νc νe–( )
ν th

--------------------

1
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α

∆F2 4 6 8 10 12 14
10

20
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Fig. 3. Dependences of the optimal values of parameters
(1) α0, (2) αl, and (3) αr on ∆F.
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Note now that eigenvalue E1 exists actually only at
∆F > 4 when the right-hand minimum and maximum of
potential V(x) set by relation (3.8) are sufficiently far
apart at the x-axis. At ∆F < 4, the right-hand minimum
and maximum of potential V(x) first converge to an
inflection point and then vanish; correspondingly,
eigenvalue E1 also vanishes. Thus, at 2 & ∆F < 4, the
main relaxation contribution to Eq. (3.12) is made only
by the terms in Eq. (3.12) with eigenfunctions ϕ0 and ϕ2
corresponding to eigenvalues E0 and E2.

4. CHARACTERISTIC TIMES 
OF HETEROGENEOUS NUCLEATION

Taking into account relations (2.4), (3.3), (3.12),
(3.5), and (3.24)–(3.26), we arrive at the following
expressions for characteristic times ∆t0 > ∆t1 > ∆t2 of
the heterogeneous nucleation at the incubation stage:

(4.1)

(4.2)

(4.3)

There are two independent external parameters of a
problem affecting characteristic times (4.1)–(4.3). One
of these parameters is related to the size of condensa-
tion nucleus, while the other one, to the chemical poten-
tial (or supersaturation) of vapor. The nucleus size man-
ifest itself in Eqs. (4.1)–(4.3) via values νth, bth, and
|∂2bν/∂ν2|th. For example, in the case of macroscopic
nuclei of well-soluble surfactant, we have [11, 12]

(4.4)

(4.5)

∆t0

νc νe–( )2

W th
+

----------------------- 1
E0
-----

4 νc νe–( )2

11W th
+ 1 113/66∆F–( )

-----------------------------------------------------,= =

∆t1

νc νe–( )2

W th
+

----------------------- 1
E1
-----

νc νe–( )2

6W th
+ ∆F 1 13/24∆F–( )

-------------------------------------------------------,= =

∆t2

νc νe–( )2

W th
+

----------------------- 1
E2
-----

νc νe–( )2

6W th
+ ∆F 1 47/24∆F+( )

--------------------------------------------------------.= =

ν th 9νn/2a( )3/2,=

bth 2 2a( )3/2/27νn
1/2,=

(4.6)

where the size of condensation nucleus dissolved in a
droplet is characterized by the number νn of its mole-
cules or ions; a = (4πγ/kT)(3vα/4π)2/3, γ is the droplet
surface tension; and vα is the molecular volume of con-
densate in the liquid phase.

According to Eqs. (1.3) and (1.5)–(1.7), the chemi-
cal potential of vapor enters into Eqs. (4.1)–(4.3) via
values νc – νe and ∆F. In this case, it is convenient to
choose directly the height ∆F of activation barrier of
nucleation, instead of the relative chemical potential of
vapor ε, as a second independent parameter of a prob-
lem for the analysis of characteristic kinetic times. This
is due to the fact that, as the size of condensation
nucleus varies, we should remain in the subthreshold
region of vapor metastability whose boundaries with
respect to vapor supersaturation depend on the nucleus
size. However, setting ∆F, we can satisfy this condition
in the simplest manner.

From Eqs. (4.1)–(4.3) and in view of Eqs. (1.5)–(1.7),
we arrive at the following general estimates of times
∆t0, ∆t1, and ∆t2:

(4.7)

(4.8)

(4.9)

respectively.
In the limit of large activation energies ∆F, inequal-

ities (4.7)–(4.9) are transformed into equalities. It is
seen that, as ∆F increases, time ∆t0 increases, while
times ∆t1 and ∆t2 diminish.

It was shown earlier [2, 3, 9], that, at ∆F @ 1, time
required to establish the steady state in the vicinity of
the maximum of the work of droplet formation is equal

to ∆tc = (∆νc)2/2 , whereas the time required to
establish the equilibrium distribution in the vicinity of

∂2bν/∂ν2
th 211/2a9/2/310νn

7/2,=

∆t0 16/11W th
+( ) . ∂2bν/∂ν2

th( )2/3∆F2/3,>

∆t1 2/3W th
+( ) 3/2 ∂2bν/∂ν2

th( )2/3∆F 1/3– ,>
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Fig. 4. Dependence of eigenvalue E0 on ∆F.
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the minimum of formation work is equal to ∆te =

(∆νe)2/2 . When equality ∆νe = ∆νc is fulfilled
within the framework of approximation (1.4), charac-
teristic times ∆te and ∆tc coincide with each other. It is
seen from relations (1.5) and (1.8) that times ∆tc and ∆te

are equal to the right-hand side of Eq. (4.8); i.e., they
coincide with times ∆t1 and ∆t2 in the principal order
with respect to small parameter 1/∆F. A large number
of works are available (for example, see [6–8]) on the
study of times required to establish the steady state in
the vicinity of the maximum of the work of droplet for-
mation in the theory of homogeneous nucleation, which
are reviewed in a monograph [5]. Times obtained in [5–
8] are characterized by the same functional dependence

on the half-width ∆νc and value  as the principal
term of expression (4.2) for time ∆t1 in the principal
order with respect to small parameter 1/∆F [with allow-
ance for Eq. (1.9)] and only slightly differ in the numer-
ical coefficient.

Based on relations (3.10), (3.12), (3.15), (3.16), and
(3.19)–(3.26) and taking into account equalities (4.1)–
(4.3), we interpret relaxation times ∆t0, ∆t1, and ∆t2. It
is seen that time ∆t0, which is the longest of all relax-
ation times, actually determines the establishment of
equilibrium droplet distribution over the entire region
νe – ∆νe & ν & νc – ∆νc where the ϕ0(x) function is non-
zero. The establishment of steady-state droplet distribu-
tion in the near-critical region |ν – νc | & ∆νc depends on
the value of ∆F. If ∆F > 4, the eigenvalue E1 and eigen-
function ϕ1(x) exist. Since eigenfunctions ϕ0(x) and
ϕ2(x) in the near-critical region are exponentially small
as compared with this function, time ∆t1 determines, in
accordance with [2–4], the establishment of steady-
state droplet distribution in this region. However, if 2 &
∆F & 4, the eigenvalue E1 and eigenfunction ϕ1(x) do
not exist. Then, the establishment of droplet steady-
state distribution in the near-critical region is deter-
mined by times ∆t0 and ∆t2. In this case, this establish-
ment occurs slower in view of inequality ∆t0 > ∆t1.
Note, however, that, at all t > 0 in the near-critical

region, deviation nν –  is small due to the exponen-
tial smallness of eigenfunctions ϕ0(x) and ϕ2(x).

Let us find now how the nucleation rate varies in
time. For the non-steady-state nucleation rate Jc (equal
to droplet flux Jν along the size axis at ν = νc), from
Eqs. (2.4)–(2.6) and (2.10), we find

(4.10)

Allowing for relations (3.2), (3.5), (3.6), and (3.12), we
transform Eq. (4.10) into:

(4.11)

W th
+

W th
+

nν
s( )

Jc Js Wν
+nν

0( ) ∂f
∂ν
------

ν νc=

.–=

Jc Js

Wc
+nc

0( )

νc νe–
---------------- Ciφ

∂ϕ i

∂x
--------

x
1
2
---=
e

Eiτ–
.

i 0=

∞

∑–=

Taking into account equalities (2.13), (2.15), and (1.9)
and considering only the contributions with the longest
relaxation times, we rewrite expression (4.11) with
allowance for (3.15), (3.16), (3.19)–(3.26), (3.3), and
(4.1)–(4.3) as

(4.12)

where only the principal orders with respect to ∆F are
accounted for in pre-exponential factors, whereas the
first corrections with respect to small parameter 1/∆F
are additionally taken into account in the powers of
exponents. Let us suggest that the values of coefficients
C0, C1, and C2 that are determined by the initial condi-
tion to the droplet size distribution are of the order of
unity. At ∆F * 2, the second and fourth summands in
the right-side of Eq. (4.12) will be at least by two orders
of magnitude smaller than unity at all t > 0. Then, it is
seen from Eq. (4.12) that these summands cannot cause
any noticeable deviations in the non-steady-state nucle-
ation rate Jc from the steady-state rate Js. This is
explained by the fact that eigenfunctions ϕ0 and ϕ2 cor-
responding to eigenvalues E0 and E2 are exponentially
small near the value ν = νc in Eq. (4.10). The third term
in the right-hand side of Eq. (4.12) appearing only at
∆F > 4 (when eigenvalue E1 exists) becomes exponen-
tially smaller than unity at t * t1. Thus, at ∆F > 4, time
∆t1 is the time of the relaxation of non-steady-state
nucleation rate Jc to the steady-state value Js. As was
already noted, in the principal order with respect to
small parameter 1/∆F, this time coincides with time ∆tc
found in [2–4].
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